Skip to main content

Advertisement

Log in

A tripeptide (NSK) inhibits Japanese encephalitis virus infection in vitro and in vivo

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Japanese encephalitis virus (JEV) is a major pathogen that can cause acute viral encephalitis in both humans and animals. Domain III of the viral envelope protein (EDIII) is involved in binding to host cell receptor(s) to facilitate virus entry. Our previous study showed that the loop3 peptide of EDIII possesses antiviral activity against JEV infection. In this paper, we demonstrate that three residues (NSK) in loop3 are responsible for the antiviral activity of loop3 peptide. In vitro experiments showed that the tripeptide NSK could inhibit JEV infection in both BHK-21 and Neuro-2A cells by inhibiting attachment of JEV to the cells, with IC50 values of 8 μM and 6.5 μM, respectively. In vivo experiments showed that the tripeptide could increase the survival of mice challenged with JEV to 75 % when administrated intracerebrally. Therefore, this tripeptide may serve as the basis for the development of novel antiviral agents against Japanese encephalitis virus infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Solomon T (2003) Exotic and emerging viral encephalitides. Curr Opin Neurol 16:411

    Article  PubMed  Google Scholar 

  2. Solomon T, Dung NM, Kneen R, Gainsborough M, Vaughn DW, Khanh VT (2000) Japanese encephalitis. J Neurol Neurosurg Psychiatr 68:405–415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Hanna JN, Ritchie SA, Phillips DA, Shield J, Bailey MC, Mackenzie JS, Poidinger M, McCall BJ, Mills PJ (1996) An outbreak of Japanese encephalitis in the Torres Strait, Australia, 1995. Med J Aust 165:256–260

    CAS  PubMed  Google Scholar 

  4. Lindenbach BD, Rice C (2001) Flaviviridae: the viruses and their replication. Fields Virol 1:991–1041

    Google Scholar 

  5. Mackenzie JS, Gubler DJ, Petersen LR (2004) Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10:S98–S109

    Article  CAS  PubMed  Google Scholar 

  6. Tiwari S, Singh RK, Tiwari R, Dhole TN (2012) Japanese encephalitis: a review of the Indian perspective. Braz J Infect Dis 16:564–573

    Article  PubMed  Google Scholar 

  7. Rice CM, Lenches EM, Eddy SR, Shin SJ, Sheets RL, Strauss JH (1985) Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Zhang W, Ogata S, Clements D, Strauss JH, Baker TS, Kuhn RJ, Rossmann MG (2004) Conformational changes of the flavivirus E glycoprotein. Structure 12:1607–1618

    Article  CAS  PubMed  Google Scholar 

  9. Heinz FX, Allison SL (2001) The machinery for flavivirus fusion with host cell membranes. Curr Opin Microbiol 4:450–455

    Article  CAS  PubMed  Google Scholar 

  10. McMinn PC (1997) The molecular basis of virulence of the encephalitogenic flaviviruses. J Gen Virol 78:2711–2722

    CAS  PubMed  Google Scholar 

  11. Perera R, Khaliq M, Kuhn RJ (2008) Closing the door on flaviviruses: entry as a target for antiviral drug design. Antivir Res 80:11–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S, Lescar J, Heinz FX, Rey FA (2004) Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23:728–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kanai R, Kar K, Anthony K, Gould LH, Ledizet M, Fikrig E, Marasco WA, Koski RA, Modis Y (2006) Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 80:11000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Luca VC, AbiMansour J, Nelson CA, Fremont DH (2012) Crystal structure of the Japanese encephalitis virus envelope protein. J Virol 86:2337–2346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Modis Y, Ogata S, Clements D, Harrison SC (2004) Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–319

    Article  CAS  PubMed  Google Scholar 

  16. Nayak V, Dessau M, Kucera K, Anthony K, Ledizet M, Modis Y (2009) Crystal structure of dengue virus type 1 envelope protein in the post fusion conformation and its implications for membrane fusion. J Virol 83:4338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Chin J, Chu J, Ng M (2007) The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry. Microbes Infect 9:1–6

    Article  CAS  PubMed  Google Scholar 

  18. Chiu MW, Yang YL (2003) Blocking the dengue virus 2 infections on BHK-21 cells with purified recombinant dengue virus 2 E protein expressed in Escherichia coli. Biochem Biophys Res Commun 309:672–678

    Article  CAS  PubMed  Google Scholar 

  19. Chu J, Rajamanonmani R, Li J, Bhuvanakantham R, Lescar J, Ng ML (2005) Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein. J Gen Virol 86:405

    Article  CAS  PubMed  Google Scholar 

  20. Smit JM, Moesker B, Rodenhuis-Zybert I, Wilschut J (2011) Flavivirus cell entry and membrane fusion. Viruses 3:160–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375:291–298

    Article  CAS  PubMed  Google Scholar 

  22. Takahashi H, Pool V, Tsai TF, Chen RT (2000) Adverse events after Japanese encephalitis vaccination: review of post-marketing surveillance data from Japan and the United States. Vaccine 18:2963–2969

    Article  CAS  PubMed  Google Scholar 

  23. Ohtaki E, Murakami Y, Komori H, Yamashita Y, Matsuishi T (1992) Acute disseminated encephalomyelitis after Japanese B encephalitis vaccination. Pediatr Neurol 8:137–139

    Article  CAS  PubMed  Google Scholar 

  24. Chávez JH, Silva JR, Amarilla AA, Moraes Figueiredo LT (2010) Domain III peptides from flavivirus envelope protein are useful antigens for serologic diagnosis and targets for immunization. Biologicals 38:613–618

    Article  PubMed  Google Scholar 

  25. Li C, Zhang L, Sun M, Li P, Huang L, Wei J, Yao Y, Isahg H, Chen P, Mao X (2012) Inhibition of Japanese encephalitis virus entry into the cells by the envelope glycoprotein domain III (EDIII) and the loop3 peptide derived from EDIII. Antivir Res 94:179–183

    Article  CAS  PubMed  Google Scholar 

  26. Ishag HZ, Li C, Huang L, Sun MX, Wang F, Ni B, Malik T, Chen PY, Mao X (2013) Griffithsin inhibits Japanese encephalitis virus infection in vitro and in vivo. Arch Virol 158:349–358

    Article  CAS  PubMed  Google Scholar 

  27. Sebastian L, Desai A, Madhusudana SN, Ravi V (2009) Pentoxifylline inhibits replication of Japanese encephalitis virus: a comparative study with ribavirin. Int J Antimicrob Ag 33:168–173

    Article  CAS  Google Scholar 

  28. Sebastian L, Desai A, Shampur MN, Perumal Y, Sriram D, Vasanthapuram R (2008) N-methylisatin-beta-thiosemicarbazone derivative (SCH 16) is an inhibitor of Japanese encephalitis virus infection in vitro and in vivo. Virol J 5:64

    Article  PubMed Central  PubMed  Google Scholar 

  29. Jones JC, Turpin EA, Bultmann H, Brandt CR, Schultz-Cherry S (2006) Inhibition of influenza virus infection by a novel antiviral peptide that targets viral attachment to cells. J Virol 80:11960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ishag HZ, Li C, Huang L, Sun MX, Ni B, Guo CX, Mao X (2013) Inhibition of Japanese encephalitis virus infection in vitro and in vivo by pokeweed antiviral protein. Virus Res 171:89–96

    Article  CAS  PubMed  Google Scholar 

  31. Johnson RT, Burke DS, Elwell M, Leake CJ, Nisalak A, Hoke CH, Lorsomrudee W (1985) Japanese encephalitis: immunocytochemical studies of viral antigen and inflammatory cells in fatal cases. Ann Neurol 18:567–573

    Article  CAS  PubMed  Google Scholar 

  32. Raung SL, Chen SY, Liao SL, Chen JH, Chen CJ (2007) Japanese encephalitis virus infection stimulates Src tyrosine kinase in neuron/glia. Neurosci Lett 419:263–268

    Article  CAS  PubMed  Google Scholar 

  33. Ni H, Barrett ADT (1998) Attenuation of Japanese encephalitis virus by selection of its mouse brain membrane receptor preparation escape variants. Virology 241:30–36

    Article  CAS  PubMed  Google Scholar 

  34. Pessi A, Langella A, Capito E, Ghezzi S, Vicenzi E, Poli G, Ketas T, Mathieu C, Cortese R, Horvat B, Moscona A, Porotto M (2012) A general strategy to endow natural fusion-protein-derived peptides with potent antiviral activity. PLoS One 7:e36833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Larena M, Regner M, Lee E, Lobigs M (2011) Pivotal role of antibody and subsidiary contribution of CD8+ T cells to recovery from infection in a murine model of Japanese encephalitis. J Virol 85:5446–5455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Deas TS, Binduga-Gajewska I, Tilgner M, Ren P, Stein DA, Moulton HM, Iversen PL, Kauffman EB, Kramer LD, Shi PY (2005) Inhibition of flavivirus infections by antisense oligomers specifically suppressing viral translation and RNA replication. J Virol 79:4599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Holden KL, Stein DA, Pierson TC, Ahmed AA, Clyde K, Iversen PL, Harris E (2006) Inhibition of dengue virus translation and RNA synthesis by a morpholino oligomer targeted to the top of the terminal 3′ stem–loop structure. Virology 344:439–452

    Article  CAS  PubMed  Google Scholar 

  38. Noueiry AO, Olivo PD, Slomczynska U, Zhou Y, Buscher B, Geiss B, Engle M, Roth RM, Chung KM, Samuel M (2007) Identification of novel small-molecule inhibitors of West Nile virus infection. J Virol 81:11992–12004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lim PO, Lee TH, Chung KM (2012) Potential therapeutics against flaviviruses. J Bacteriol Virol 42:108–120

    Article  CAS  Google Scholar 

  40. Bai F, Town T, Pradhan D, Cox J, Ledizet M, Anderson JF, Flavell RA, Krueger JK, Koski RA, Fikrig E (2007) Antiviral peptides targeting the West Nile virus envelope protein. J Virol 81:2047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hrobowski YM, Garry RF, Michael SF (2005) Peptide inhibitors of dengue virus and West Nile virus infectivity. Virol J 2:49

    Article  PubMed Central  PubMed  Google Scholar 

  42. Löhr K, Knox JE, Phong WY, Ma NL, Yin Z, Sampath A, Patel SJ, Wang WL, Chan WL, Rao K (2007) Yellow fever virus NS3 protease: peptide-inhibition studies. J Gen Virol 88:2223

    Article  PubMed  Google Scholar 

  43. Schmidt AG, Yang PL, Harrison SC (2010) Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate. PLoS Pathog 6:e1000851

    Article  PubMed Central  PubMed  Google Scholar 

  44. Schmidt AG, Yang PL, Harrison SC (2010) Peptide inhibitors of flavivirus entry derived from the E protein stem. J Virol 84:12549–12554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Yennamalli R, Subbarao N, Kampmann T, McGeary RP, Young PR, Kobe B (2009) Identification of novel target sites and an inhibitor of the dengue virus E protein. J Comput Aid Mol Des 23:333–341

    Article  CAS  Google Scholar 

  46. Noble CG, Chen YL, Dong H, Gu F, Lim SP, Schul W, Wang QY, Shi PY (2010) Strategies for development of dengue virus inhibitors. Antivir Res 85:450–462

    Article  CAS  PubMed  Google Scholar 

  47. Geiss BJ, Stahla H, Hannah AM, Gari HH, Keenan SM (2009) Focus on flaviviruses: current and future drug targets. Future Med Chem 1:327–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Wang QY, Patel SJ, Vangrevelinghe E, Xu HY, Rao R, Jaber D, Schul W, Gu F, Heudi O, Ma NL (2009) A small-molecule dengue virus entry inhibitor. Antimicrob Agents Chemother 53:1823–1831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Das S, Laxminarayana SV, Chandra N, Ravi V, Desai A (2009) Heat shock protein 70 on Neuro2a cells is a putative receptor for Japanese encephalitis virus. Virology 385:47–57

    Article  CAS  PubMed  Google Scholar 

  50. Chien YJ, Chen WJ, Hsu WL, Chiou SS (2008) Bovine lactoferrin inhibits Japanese encephalitis virus by binding to heparan sulfate and receptor for low density lipoprotein. Virology 379:143–151

    Article  CAS  PubMed  Google Scholar 

  51. Das S, Ravi V, Desai A (2011) Japanese encephalitis virus interacts with vimentin to facilitate its entry into porcine kidney cell line. Virus Res 160:404–408

    Article  CAS  PubMed  Google Scholar 

  52. Zhu YZ, Cao MM, Wang WB, Wang W, Ren H, Zhao P, Qi ZT (2012) Association of heat-shock protein 70 with lipid rafts is required for Japanese encephalitis virus infection in Huh7 cells. J Gen Virol 93:61–71

    Article  CAS  PubMed  Google Scholar 

  53. Thongtan T, Wikan N, Wintachai P, Rattanarungsan C, Srisomsap C, Cheepsunthorn P, Smith DR (2012) Characterization of putative Japanese encephalitis virus receptor molecules on microglial cells. J Med Virol 84:615–623

    Article  CAS  PubMed  Google Scholar 

  54. Batra G, Raut R, Dahiya S, Kamran N, Swaminathan S, Khanna N (2010) Pichia pastoris-expressed dengue virus type 2 envelope domain III elicits virus-neutralizing antibodies. J Virol Methods 167:10–16

    Article  CAS  PubMed  Google Scholar 

  55. Nybakken GE, Oliphant T, Johnson S, Burke S, Diamond MS, Fremont DH (2005) Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature 437:764–769

    Article  CAS  PubMed  Google Scholar 

  56. Alka B, Alka K, Malik YP, Vrati S (2007) Immunogenicity and protective efficacy of the E. coli-expressed domain III of Japanese encephalitis virus envelope protein in mice. Med Microbiol Immunol 196:227–231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the priority academic development program of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-qiang Shen or Xiang Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Ge, Ll., Yu, Yl. et al. A tripeptide (NSK) inhibits Japanese encephalitis virus infection in vitro and in vivo . Arch Virol 159, 1045–1055 (2014). https://doi.org/10.1007/s00705-013-1925-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1925-y

Keywords

Navigation