Skip to main content

Advertisement

Log in

Pathogenic and vaccine strains of Japanese encephalitis virus elicit different levels of human macrophage effector functions

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In India, Japanese encephalitis virus (JEV) remains one of the major causative agents of pediatric encephalitis. Macrophages support various neurotropic viruses and influence the immune response. However, the functional status of human macrophages during JEV infection remains unidentified. In this study, we examined the cytokine response and co-stimulatory marker levels in primary human monocyte derived macrophages (MDMs) infected with JE057434 (neurovirulent, primary clinical isolate) or SA14-14-2 (non-neurovirulent, live-attenuated vaccine) JEV strains. We also examined the differential susceptibility of these JEV strains to antiviral effects of interferon and nitric oxide. The results indicate that both JEV strains are capable of inducing various cytokines (type-I IFN, TNFα, IL6 and IL8) and co-stimulatory molecules (CD86 and CD80) in MDMs. However, they varied in replication potential and corresponding interferon sensitivity. SA14-14-2 was highly susceptible to interferon and nitric oxide when compared to JE057434. Thus, reduction in infectious virion production and increased sensitivity of SA14-14-2 towards interferon in MDMs could potentially play a role in limiting viral spread to additional target tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Erlanger ET, Weiss S, Keiser J, Utzinger J, Wiedenmayer K (2009) Past, present, and future of Japanese Encephalitis. Emerg Infect Dis 15(1):1–7

    Article  PubMed  Google Scholar 

  2. Gore MM (2004) Japanese encephalitis virus: host-Virus interactions. In: Mishra AC (ed) NIV commemorative compendium, 1st edn. NIV, Pune, pp 357–405

    Google Scholar 

  3. CDC JEV fact sheet. http://www.cdc.gov/ncidod/dvbid/jencephalitis/facts.htm

  4. Kumar P, Krishna DV, Sulochana P, Nirmala G, Haridattatreya M, Satchidanandam V (2004) Cell-mediated immune responses in healthy children with a history of subclinical infection with Japanese encephalitis virus: analysis of CD4+ and CD8+ T cell target specificities by intracellular delivery of viral proteins using the human immunodeficiency virus Tat protein transduction domain. J Gen Virol 85:471–482

    Article  PubMed  CAS  Google Scholar 

  5. Solomon T (2004) Flavivirus encephalitis. N Engl J Med 351:370–378

    Article  PubMed  CAS  Google Scholar 

  6. Libraty HD, Nisalak A, Endy PT, Suntayakorn S, Vaughn WD, Innis LB (2002) Clinical and immunological risk factors for severe disease in Japanese encephalitis. Trans R Soc Trop Med Hyg 96:173–178

    Article  PubMed  Google Scholar 

  7. Yu YX, Zhang GM, Guo YP, Ao J, Li HM (1988) Safety of a live-attenuated Japanese encephalitis virus vaccine (SA14-14-2) for children. Am J Trop Med Hyg 39:214–217

    Google Scholar 

  8. Kumar R, Tripathi P, Rizvi A (2009) Effectiveness of one dose of SA 14–14-2 vaccine against Japanese Encephalitis. N Engl J Med 360:1465–1466

    Article  PubMed  CAS  Google Scholar 

  9. Eckels KH, Yu YX, Dubois DR, Marchette NJ, Trent DW, Johnson AJ (1988) Japanese encephalitis virus live-attenuated vaccine, Chinese strain SA 14–14-2; adaptation to primary canine kidney cell cultures and preparation of a vaccine for human use. Vaccine 6:513–518

    Article  PubMed  CAS  Google Scholar 

  10. Li Y, Yea J, Yanga X, Xua M, Chena L, Meia L, Zhua J, Liua X, Chena H, Cao S (2009) Infection of mouse bone marrow-derived dendritic cells by live attenuated Japanese encephalitis virus induces cells maturation and triggers T cells activation. Vaccine 29:855–862

    Article  Google Scholar 

  11. Woodson ES, Freiberg NA, Holbrook RM (2011) Differential cytokine responses from primary human Kupffer cells following infection with wild-type or vaccine strain yellow fever virus. Virology 412:188–195

    Article  PubMed  CAS  Google Scholar 

  12. Aleyas GA, George AJ, Han WY, Rahman MM, Kim JS, Han BS, Kim SB, Kim K, Eo KS (2009) Functional modulation of dendritic cells and macrophages by Japanese encephalitis virus through MyD88 adaptor molecule-dependent and -independent pathways. J Immunol 183:2462–2474

    Article  PubMed  CAS  Google Scholar 

  13. Mathur A, Bharadwaj M, Kulshreshtha R, Rawat S, Jain A, Chaturvedi UC (1988) Immunopathological study of spleen during Japanese encephalitis virus infection in mice. Br J Exp Pathol 69:423–432

    PubMed  CAS  Google Scholar 

  14. Kedarnath N, Gore MM, Dayaraj C, Sathe SP, Ghosh NS (1986) Effect of various mitogens on the replication of Japanese encephalitis virus in human mononuclear leukocyte cultures. Indian J Med Res 84:231–238

    PubMed  CAS  Google Scholar 

  15. Ellermann-Eriksen S (2005) Macrophages and cytokines in the early defense against herpes simplex virus. Virol J 2:59. doi:10.1186/1743-422X-2-59

    Article  PubMed  Google Scholar 

  16. King NJ, Getts RD, Getts TM, Rana S, Shrestha B, Kesson MA (2007) Immunopathology of flavivirus infections. Immunol Cell Biol 85:33–42

    Article  PubMed  CAS  Google Scholar 

  17. Dejnirattisai W, Duangchinda T, Lin LC, Vasanawathana S, Jones M, Jacobs M, Malasit P, Xu NX, Screaton G, Mongkolsapaya J (2008) A complex interplay among virus, dendritic cells T cells, and cytokines in dengue virus infections. J Immunol 181:5865–5874

    PubMed  CAS  Google Scholar 

  18. Spaeth BG, Longman SR, Albert LM, Rice MC (2005) Live attenuated yellow fever 17D infects human DCs and allows for presentation of endogenous and recombinant T cell epitopes. J Exp Med 202:1179–1184

    Article  Google Scholar 

  19. Winter PM, Dung MN, Loan TH, Kneen R, Wills B, Thu TL, House D, White JN, Farrar JJ, Hart AC, Solomon T (2004) Proinflammatory cytokines and chemokines in humans with Japanese Encephalitis. J Infec Dis 190:1618–1626

    Article  CAS  Google Scholar 

  20. Nasveld EP, Ebringer A, Elmes N, Bennett S, Yoksan S, Aaskov J, McCarthy K, Kanesathasan N, Meric C, Reid M (2010) Long term immunity to live attenuated Japanese encephalitis chimeric virus vaccine—randomized, double-blind, 5-year phase II study in healthy adults. Human Vaccines 6:1–9

    Article  Google Scholar 

  21. Arroyo J, Guirakhoo F, Fenner S, Zhang ZX, Monath TP, Chambers TJ (2001) Molecular basis for attenuation of neurovirulence of a yellow fever Virus/Japanese encephalitis virus chimera vaccine (ChimeriVax-JE). J Virol 75:934–942

    Article  PubMed  CAS  Google Scholar 

  22. Pichyangkul S, Endy PT, Kalayanarooj S, Nisalak A, Yongvanitchit K, Green S, Rothman LA, Ennis AF, Libraty HD (2003) A blunted blood plasmacytoid dendritic cell response to an acute systemic viral infection is associated with increased disease severity. J Immunol 171:5571–5578

    PubMed  CAS  Google Scholar 

  23. Aguilar PV, Paessler S, Carrara SA, Baron S, Poast J, Wang E, Moncayo CA, Anishchenko M, Watts D, Tesh BR, Weaver CS (2005) Variation in interferon sensitivity and induction among strains of eastern equine encephalitis virus. J Virol 79:11300–11310

    Article  PubMed  CAS  Google Scholar 

  24. Liang JJ, Liao LC, Liao TJ, Lee LY, Lin LY (2009) A Japanese encephalitis virus vaccine candidate strain is attenuated by decreasing its interferon antagonistic ability. Vaccine 27:2746–2754

    Article  PubMed  CAS  Google Scholar 

  25. Akaike T, Maeda H (2000) Nitric oxide and virus infection. Immunology 101:300–308

    Article  PubMed  CAS  Google Scholar 

  26. Johnson RT, Burke DS, Elwell M, Leake CJ, Nisalak A, Hoke CH, Lorsomrudee W (1985) Japanese encephalitis: immunocytochemical studies of viral antigen and inflammatory cells in fatal cases. Ann Neurol 18:567–573

    Article  PubMed  CAS  Google Scholar 

  27. Ravi V, Parida S, Desai A, Chandramuki A, Gourie-Devi M, Grau EG (1997) Correlation of tumor necrosis factor levels in the serum and cerebrospinal fluid with clinical outcome in Japanese encephalitis patients. J Med Virol 51:132–136

    Article  PubMed  CAS  Google Scholar 

  28. Ye C, Abraham S, Wu H, Shankar P, Manjunath N (2011) Silencing early viral replication in macrophages and dendritic cells effectively suppresses flavivirus encephalitis. PLoS One 6(3):e17889. doi:10.1371/journal.pone.0017889

    Article  PubMed  CAS  Google Scholar 

  29. Hase T, Dubois RD, Summers LP, Downs BM, Ussery AM (1993) Comparison of replication rates and pathogenicities between the SA 14 parent and SA 14–14-2 vaccine strains of Japanese encephalitis virus in mouse brain neurons. Arch Virol 130:131–143

    Article  PubMed  CAS  Google Scholar 

  30. Ni H, Chang JG, Xie H, Trent WD, Barrett A (1995) Molecular basis of attenuation of neurovirulence of wild-type Japanese encephalitis virus strain SA14. J Gen Virol 76:409–413

    Article  PubMed  CAS  Google Scholar 

  31. Nitayaphan S, Grant AJ, Chang JG, Trent WD (1990) Nucleotide sequence of the virulent SA- 14 strain of Japanese encephalitis virus and its attenuated vaccine derivative, SA14-14-2. Virology 177:541–552

    Article  PubMed  CAS  Google Scholar 

  32. Lee E, Lobigs M (2002) Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J Virol 76:4901–4911

    Article  PubMed  CAS  Google Scholar 

  33. Wang T, Town T, Alexopoulou L, Anderson FJ, Fikrig E, Flavell AR (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366–1373

    Article  PubMed  CAS  Google Scholar 

  34. Wang PJ, Liu P, Latz E, Golenbock TD, Finberg WR, Libraty HD (2006) Flavivirus activation of plasmocytoid dentritic cells delinates key elements of TLR7 signaling beyond endosomal recognition. J Immunol 177:7114–7121

    PubMed  CAS  Google Scholar 

  35. Cao S, Li Y, Ye J, Yang X, Chen L, Liu X, Chen H (2011) Japanese Encephalitis Virus wild strain infection suppresses dendritic cells maturation and function, and causes the expansion of regulatory T cells. Virol J 8:39

    Article  PubMed  CAS  Google Scholar 

  36. Hsu CT, Gao QJ, Lu HK, Tsai HC, Huang YC, Tzang SB (2008) Japanese encephalitis virus envelope protein mitigates TNF-alpha mRNA expression in RAW264.7 cells. Inflammation 31:133–140

    Article  PubMed  CAS  Google Scholar 

  37. Arjona A, Ledizet M, Anthony K, Bonafé N, Modis Y, Town T, Fikrig E (2007) West Nile virus envelope protein inhibits dsRNA-induced innate immune responses. J Immunol 179:8403–8409

    PubMed  CAS  Google Scholar 

  38. Samuel AM, Diamond SM (2005) Alpha/beta interferon protects against lethal west nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol 79:13350–13361

    Article  PubMed  CAS  Google Scholar 

  39. Diamond M, Roberts T, Edgil D, Lu B, Ernst J, Harris E (2000) Modulation of dengue virus infection in human cells by alpha, beta, and gamma interferons. J Virol 74:4957–4966

    Article  PubMed  CAS  Google Scholar 

  40. Macejak D, Jensen K, Pavco P, Phipps K, Heinz B, Colacino J, Blatt L (2001) Enhanced antiviral effect in cell culture of type 1 interferon and ribozymes targeting HCV RNA. J Viral Hepat 8:400–405

    Article  PubMed  CAS  Google Scholar 

  41. Lin R, Liao C, Lin E, Lin LY (2004) Blocking of the alpha interferon-induced Jak-Stat signaling pathway by Japanese encephalitis virus infection. J Virol 78:9285–9294

    Article  PubMed  CAS  Google Scholar 

  42. Vrati S, Agarwal V, Malik P, Wani SA, Saini M (1999) Molecular characterization of an Indian isolate of Japanese encephalitis virus that shows an extended lag phase during growth. J Gen Virol 80:1665–1671

    PubMed  CAS  Google Scholar 

  43. Seitz C, Frensing T, Höper D, Kochs G, Reichl U (2010) High yields of influenza A virus in Madin–Darby canine kidney cells are promoted by an insufficient interferon-induced antiviral state. J Gen Virol 91:1754–1763

    Article  PubMed  CAS  Google Scholar 

  44. Ashour J, Laurent-Rolle M, Shi PY, García-Sastre A (2009) NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 83:5408–5418

    Article  PubMed  CAS  Google Scholar 

  45. Lin Y, Huang LY, Ma S, Yeh C, Chiou S, Chen L, Liao C (1997) Inhibition of Japanese encephalitis virus infection by nitric oxide: antiviral effect of nitric oxide on RNA virus replication. J Virol 71:5227–5235

    PubMed  CAS  Google Scholar 

  46. Pacher P, Beckman J, Liaudet L (2007) Nitric Oxide and Peroxynitrite in Health and Disease. Physiol Rev 87:315–424

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Dr. Bhagwat of Sahyadri Hospitals for providing buffy coat samples, Dr. M. Thakar (NARI) for flow cytometry, and Dr. V. P. Bondre (Encephalitis Group, NIV) for support in real-time PCR of JE virus. We would also like to thank Mr. Ohja (NIV), Ms. Sangeeta, Dr. Saha and Dr. Mitra (NCCS, Pune) for their help with western blotting. We are grateful to Dr. Adrien Six (Université Pierre et Marie Curie - Paris), Dr. Moanaro Biswas and Dr. A. Basu, NIV, for their critical comments during the preparation of the document. H.S is a senior research fellow of Council of Scientific and Industrial Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milind M. Gore.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 169 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sooryanarain, H., Sapkal, G.N. & Gore, M.M. Pathogenic and vaccine strains of Japanese encephalitis virus elicit different levels of human macrophage effector functions. Arch Virol 157, 1905–1918 (2012). https://doi.org/10.1007/s00705-012-1386-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1386-8

Keywords

Navigation