Skip to main content
Log in

Analysis of deoxynucleosides in bacteriophages ϕEF24C and K and the frequency of a specific restriction site in the genomes of members of the bacteriophage subfamily Spounavirinae

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The genera SPO1-like and Twort-like viruses in the subfamily Spounavirinae of the family Myoviridae have been newly proposed, with the reorganization of the SPO1-related bacteriophages (phages). A criterion defining these viral genera is the presence/absence of DNA modifications. In this study, liquid chromatography/mass spectrometry showed that phages ϕEF24C and K of the subfamily Spounavirinae have unmodified DNA, which classifies them as Twort-like viruses. Moreover, in the subfamily Spounavirinae, DNA modification and elimination of a particular DNA sequence were suggested to be the major antirestriction strategies of the SPO1-like and Twort-like viruses, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Alemayehu D, Ross RP, O’Sullivan O, Coffey A, Stanton C, Fitzgerald GF, McAuliffe O (2009) Genome of a virulent bacteriophage Lb338-1 that lyses the probiotic Lactobacillus paracasei cheese strain. Gene 448:29–39

    Article  PubMed  CAS  Google Scholar 

  2. Bikard D, Marraffini LA (2011) Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages. Curr Opin Immunol. doi:10.1016/j.coi.2011.10.005

    PubMed  Google Scholar 

  3. Blumentha RM, Cheng X (2002) Chapter 7 Restriction-modification systems. In: Streips UN, Yasbin RE (eds) Modern microbial genetics, 2nd edn. Wiley-Liss, Inc., New York, pp 177–225

    Chapter  Google Scholar 

  4. Boorstein RJ, Teebor GW (1989) Effects of 5-hydroxymethyluracil and 3-aminobenzamide on the repair and toxicity of 5-hydroxymethyl-2’-deoxyuridine in mammalian cells. Cancer Res 49:1509–1514

    PubMed  CAS  Google Scholar 

  5. Carlton RM, Noordman WH, Biswas B, de Meester ED, Loessner MJ (2005) Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharmacol 43:301–312

    Article  PubMed  CAS  Google Scholar 

  6. Chibani-Chennoufi S, Dillmann ML, Marvin-Guy L, Rami-Shojaei S, Brüssow H (2004) Lactobacillus plantarum bacteriophage LP65: a new member of the SPO1-like genus of the family Myoviridae. J Bacteriol 186:7069–7083

    Article  PubMed  CAS  Google Scholar 

  7. de Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) (2009) Bergey’s manual of systemic bacteriology, 2nd edn: the Firmicutes. Springer, New York

    Google Scholar 

  8. Fauquet C, Mayo M, Maniloff J, Desselberger U, Ball L (eds) (2011) Virus taxonomy: ninth report of the international committee on taxonomy of viruses. Elsevier, New York

    Google Scholar 

  9. Huang LH, Farnet CM, Ehrlich KC, Ehrlich M (1982) Digestion of highly modified bacteriophage DNA by restriction endonucleases. Nucleic Acids Res 10:1579–1591

    Article  PubMed  CAS  Google Scholar 

  10. Kilcher S, Loessner MJ, Klumpp J (2010) Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. J Bacteriol 192:5441–5453

    Article  PubMed  CAS  Google Scholar 

  11. Klumpp J, Dorscht J, Lurz R, Bielmann R, Wieland M, Zimmer M, Calendar R, Loessner MJ (2008) The terminally redundant, nonpermuted genome of Listeria bacteriophage A511: a model for the SPO1-like myoviruses of gram-positive bacteria. J Bacteriol 190:5753–5765

    Article  PubMed  CAS  Google Scholar 

  12. Klumpp J, Lavigne R, Loessner MJ, Ackermann HW (2010) The SPO1-related bacteriophages. Arch Virol 155:1547–1561

    Article  PubMed  CAS  Google Scholar 

  13. Kwan T, Liu J, DuBow M, Gros P, Pelletier J (2005) The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci USA 102:5174–5179

    Article  PubMed  CAS  Google Scholar 

  14. Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327

    Article  PubMed  CAS  Google Scholar 

  15. Lavigne R, Ackermann HW, Kropinski AM, McAuliffe O, Calendar R, Stewart CR, Klumpp J (2009) Create the subfamily Spounavirinae in the family Myoviridae, order Caudovirales. Taxonomy proposals—prokaryote, International Committee on Taxonomy of viruses. On line: http://talk.ictvonline.org/files/proposals/taxonomy_proposals_prokaryote1/m/bact04/3950.aspx

  16. Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann HW, Kropinski AM (2009) Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9:224

    Article  PubMed  Google Scholar 

  17. Matsuzaki S, Yasuda M, Nishikawa H et al (2003) Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage ϕMR11. J Infect Dis 187:613–624

    Article  PubMed  CAS  Google Scholar 

  18. O’Flaherty S, Coffey A, Edwards R, Meaney W, Fitzgerald GF, Ross RP (2004) Genome of staphylococcal phage K: a new lineage of Myoviridae infecting gram-positive bacteria with a low G+C content. J Bacteriol 186:2862–2871

    Article  PubMed  Google Scholar 

  19. O’Flaherty S, Coffey A, Meaney W, Fitzgerald GF, Ross RP (2005) The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. J Bacteriol 187:7161–7164

    Article  PubMed  Google Scholar 

  20. O’Flaherty S, Coffey A, Meaney WJ, Fitzgerald GF, Ross RP (2005) Inhibition of bacteriophage K proliferation on Staphylococcus aureus in raw bovine milk. Lett Appl Microbiol 41:274–279

    Article  PubMed  Google Scholar 

  21. O’Flaherty S, Ross RP, Meaney W, Fitzgerald GF, Elbreki MF, Coffey A (2005) Potential of the polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. Appl Environ Microbiol 71:1836–1842

    Article  PubMed  Google Scholar 

  22. Roberts RJ, Vincze T, Posfai J, Macelis D (2010) REBASE-a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 38:D234–D236

    Article  PubMed  CAS  Google Scholar 

  23. Rocha EP, Danchin A, Viari A (2001) Evolutionary role of restriction/modification systems as revealed by comparative genome analysis. Genome Res 11:946–958

    Article  PubMed  CAS  Google Scholar 

  24. Stern A, Sorek R (2011) The phage-host arms race: shaping the evolution of microbes. BioEssays 33:43–51

    Article  PubMed  CAS  Google Scholar 

  25. Stewart CR, Casjens SR, Cresawn SG et al (2009) The genome of Bacillus subtilis bacteriophage SPO1. J Mol Biol 388:48–70

    Article  PubMed  CAS  Google Scholar 

  26. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  27. Uchiyama J, Maeda Y, Takemura I, Chess-Williams R, Wakiguchi H, Matsuzaki S (2009) Blood kinetics of four intraperitoneally administered therapeutic candidate bacteriophages in healthy and neutropenic mice. Microbiol Immunol 53:301–304

    Article  PubMed  CAS  Google Scholar 

  28. Uchiyama J, Rashel M, Maeda Y et al (2008) Isolation and characterization of a novel Enterococcus faecalis bacteriophage ϕEF24C as a therapeutic candidate. FEMS Microbiol Lett 278:200–206

    Article  PubMed  CAS  Google Scholar 

  29. Uchiyama J, Rashel M, Takemura I, Wakiguchi H, Matsuzaki S (2008) In silico and in vivo evaluation of bacteriophage ϕEF24C, a candidate for treatment of Enterococcus faecalis infections. Appl Environ Microbiol 74:4149–4163

    Article  PubMed  CAS  Google Scholar 

  30. Uchiyama J, Takemura I, Hayashi I et al (2011) Characterization of lytic enzyme open reading frame 9 (ORF9) derived from Enterococcus faecalis bacteriophage ϕEF24C. Appl Environ Microbiol 77:580–585

    Article  PubMed  CAS  Google Scholar 

  31. Uchiyama J, Takemura I, Satoh M, Kato S, Ujihara T, Akechi K, Matsuzaki S, Daibata M (2011) Improved adsorption of an Enterococcus faecalis bacteriophage ϕEF24C with a spontaneous point mutation. PLoS ONE 6:e26648

    Article  PubMed  CAS  Google Scholar 

  32. Vincze T, Posfai J, Roberts RJ (2003) NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31:3688–3691

    Article  PubMed  CAS  Google Scholar 

  33. Warren RA (1980) Modified bases in bacteriophage DNAs. Annu Rev Microbiol 34:137–158

    Article  PubMed  CAS  Google Scholar 

  34. Yee LM, Matsumoto T, Yano K, Matsuoka S, Sadaie Y, Yoshikawa H, Asai K (2011) The genome of Bacillus subtilis phage SP10: a comparative analysis with phage SPO1. Biosci Biotechnol Biochem 75:944–952

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jumpei Uchiyama.

Additional information

J. Uchiyama and Y. Maeda contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchiyama, J., Maeda, Y., Takemura, I. et al. Analysis of deoxynucleosides in bacteriophages ϕEF24C and K and the frequency of a specific restriction site in the genomes of members of the bacteriophage subfamily Spounavirinae . Arch Virol 157, 1587–1592 (2012). https://doi.org/10.1007/s00705-012-1324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1324-9

Keywords

Navigation