Skip to main content

Advertisement

Log in

Phenotypic and genotypic characterization of dengue virus isolates differentiates dengue fever and dengue hemorrhagic fever from dengue shock syndrome

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Dengue viruses (DENV) cause 50-100 million cases of acute febrile disease every year, including 500,000 reported cases of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Viral factors have been proposed to influence the severity of the disease, but markers of virulence have never been identified on DENV. Three DENV serotype-1 isolates from the 2007 epidemic in Cambodia that are derived from patients experiencing the various clinical forms of dengue were characterized both phenotypically and genetically. Phenotypic characteristics in vitro, based on replication kinetics in different cell lines and apoptosis response, grouped isolates from DF and DHF patients together, whereas the virus isolate from a DSS patient showed unique features: a lower level of replication in mammalian cells and extensive apoptosis in mosquito cells. Genomic comparison of viruses revealed six unique amino acid residues in the membrane, envelope, and in non-structural genes in the virus isolated from the DSS patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Paranjape SM, Harris E (2010) Control of dengue virus translation and replication. Curr Trop Microbiol Immunol 338:15–34

    Article  CAS  Google Scholar 

  2. Stephenson JR (2005) Understanding dengue pathogenesis: implications for vaccine design. Bull World Health Organ 83(4):308–314

    PubMed  Google Scholar 

  3. Wang E, Ni H, Xu R, Barrett AD, Watowich SJ, Gubler DJ, Weaver SC (2000) Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J Virol 74(7):3227–3234

    Article  PubMed  CAS  Google Scholar 

  4. Halstead SB, Nimmannitya S, Cohen SN (1970) Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J Biol Med 42(5):311–328

    PubMed  CAS  Google Scholar 

  5. Marchette NJ, Halstead SB, O’Rourke T, Scott RM, Bancroft WH, Vanapruks V (1979) Effect of immune status on dengue 2 virus replication in cultured leukocytes from infants and children. Infect Immun 24(1):47–50

    PubMed  CAS  Google Scholar 

  6. Guzman MG, Kouri GP, Bravo J, Soler M, Vazquez S, Morier L (1990) Dengue hemorrhagic fever in Cuba, 1981: a retrospective seroepidemiologic study. Am J Trop Med Hyg 42(2):179–184

    PubMed  CAS  Google Scholar 

  7. Rico-Hesse R, Harrison LM, Salas RA, Tovar D, Nisalak A, Ramos C, Boshell J, de Mesa MT, Nogueira RM, da Rosa AT (1997) Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 230(2):244–251

    Article  PubMed  CAS  Google Scholar 

  8. Messer WB, Gubler DJ, Harris E, Sivananthan K, de Silva AM (2003) Emergence and global spread of a dengue serotype 3, subtype III virus. Emerg Infect Dis 9(7):800–809

    PubMed  Google Scholar 

  9. Mota J, Rico-Hesse R (2009) Humanized mice show clinical signs of dengue fever according to infecting virus genotype. J Virol 83(17):8638–8645

    Article  PubMed  CAS  Google Scholar 

  10. World Health Organization (1997) Dengue haemorrhagic fever: diagnosis, treatment, prevention and control. World Health Organization, Geneva

  11. Reynes JM, Ong S, Mey C, Ngan C, Hoyer S, Sall AA (2003) Improved molecular detection of dengue virus serotype 1 variants. J Clin Microbiol 41(8):3864–3867

    Article  PubMed  CAS  Google Scholar 

  12. Leparc-Goffart I, Baragatti M, Temmam S, Tuiskunen A, Moureau G, Charrel R, de Lamballerie X (2009) Development and validation of real-time one-step reverse transcription-PCR for the detection and typing of dengue viruses. J Clin Virol 45(1):61–66

    Article  PubMed  CAS  Google Scholar 

  13. Pugachev KV, Frey TK (1998) Rubella virus induces apoptosis in culture cells. Virology 250(2):359–370

    Article  PubMed  CAS  Google Scholar 

  14. Rico-Hesse R (2003) Microevolution and virulence of dengue viruses. Adv Virus Res 59:315–341

    Article  PubMed  CAS  Google Scholar 

  15. Libraty DH, Acosta LP, Tallo V, Segubre-Mercado E, Bautista A, Potts JA, Jarman RG, Yoon IK, Gibbons RV, Brion JD, Capeding RZ (2009) A prospective nested case-control study of Dengue in infants: rethinking and refining the antibody-dependent enhancement dengue hemorrhagic fever model. PLoS Med 6:e1000171

    Article  PubMed  Google Scholar 

  16. Chen WJ, Chiou SS (2003) E/NS1 modifications of dengue 2 virus after serial passages in mammalian and/or mosquito cells. Intervirology 46(5):289–295

    Article  PubMed  CAS  Google Scholar 

  17. Añez G, Men R, Eckels KH, Lai CJ (2009) Passage of dengue virus type 4 vaccine candidates in fetal rhesus lung cells selects heparin-sensitive variants that result in loss of infectivity and immunogenicity in rhesus macaques. J Virol 83(20):10384–10394

    Article  PubMed  Google Scholar 

  18. Morens DM, Marchette NJ, Chu MC, Halstead SB (1991) Growth of dengue type 2 virus isolates in human peripheral blood leukocytes correlates with severe and mild dengue disease. Am J Trop Med Hyg 45(5):644–651

    PubMed  CAS  Google Scholar 

  19. Kurane I, Kontny U, Janus J, Ennis FA (1990) Dengue-2 virus infection of human mononuclear cell lines and establishment of persistent infections. Arch Virol 110(1–2):91–101

    Article  PubMed  CAS  Google Scholar 

  20. Kanthong N, Laosutthipong C, Flegel TW (2010) Response dengue virus infections altered by cytokine-like substances from mosquito cell cultures. BMC Microbiol 10:290

    Article  PubMed  Google Scholar 

  21. Devignot S, Sapet C, Duong V, Bergon A, Rihet P, Ong S, Lorn PT, Chroeung N, Ngeav S, Tolou HJ, Buchy P, Couissinier-Paris P (2010) Genome-wide expression profiling deciphers host responses altered during dengue shock syndrome and reveals the role of innate immunity in severe dengue. PLoS One 5:e11671

    Article  PubMed  Google Scholar 

  22. Loke P, Hammond SN, Leung JM, Kim CC, Batra S, Rocha C, Balmaseda A, Harris E (2010) Gene expression patterns of dengue virus-infected children from nicaragua reveal a distinct signature of increased metabolism. PLoS Negl Trop Dis 4:e710

    Article  PubMed  Google Scholar 

  23. Duong V, Ly S, Lorn Try P, Tuiskunen A, Ong S, Chroeung N, Lundkvist A, Leparc-Goffart I, Deubel V, Vong S, Buchy P (2011) Clinical and virological factors influencing the performance of a NS1 antigen-capture assay and potential use as a marker of dengue disease severity. PLoS Negl Trop Dis 5:e1244

    Article  PubMed  Google Scholar 

  24. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakulrach B, Rothman AL, Ennis FA, Nisalak A (2000) Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181(1):2–9

    Article  PubMed  CAS  Google Scholar 

  25. Orlinger KK, Hoenninger VM, Kofler RM, Mandl CW (2006) Construction and mutagenesis of an artificial bicistronic tick-borne encephalitis virus genome reveals an essential function of the second transmembrane region of protein E in flavivirus assembly. J Virol 80(24):12197–12208

    Article  PubMed  CAS  Google Scholar 

  26. Hsieh SC, Tsai WY, Wang WK (2010) The length of and nonhydrophobic residues in the transmembrane domain of dengue virus envelope protein are critical for its retention and assembly in the endoplasmic reticulum. J Virol 84(9):4782–4797

    Article  PubMed  CAS  Google Scholar 

  27. Avirutnan P, Punyadee N, Noisakran S, Komoltri C, Thiemmeca S, Auethavornanan K, Jairungsri A, Kanlaya R, Tangthawornchaikul N, Puttikhunt C, Pattanakitsakul SN, Yenchitsomanus PT, Mongkolsapaya J, Kasinrerk W, Sittisombut N, Husmann M, Blettner M, Vasanawathna S, Bhakdi S, Malasit P (2006) Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J Infect Dis 193(8):1078–1088

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the French Armed Forces Medical Service, the French Direction Générale de l’Armement (contrat d’objectif 07co405) and from the European Union (DENFRAME project, 6th Framework Programme: 2005-INCO-DEV2-n°517711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Leparc-Goffart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 254 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuiskunen, A., Monteil, V., Plumet, S. et al. Phenotypic and genotypic characterization of dengue virus isolates differentiates dengue fever and dengue hemorrhagic fever from dengue shock syndrome. Arch Virol 156, 2023–2032 (2011). https://doi.org/10.1007/s00705-011-1100-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-011-1100-2

Keywords

Navigation