Skip to main content

Advertisement

Log in

Optimal merging of multi-satellite precipitation data in urban areas

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This paper develops and applies algorithms for optimally merging satellite precipitation products with rain-gauge precipitation for accurate rainfall estimation. The satellite-based precipitation products (SBPs) PERSIANN-CDR, TMPA-3B42, GPM-IMERG, and GSMaP MKV are combined and evaluated to generate accurate rainfall estimates. Daily satellite precipitation data are compared with corresponding station data to calculate the bias for the period 2014–2019. Three different algorithms are proposed whose adjustable parameters are optimally determined by solving constrained optimization algorithms to produce combinations of satellite-based precipitation products. The optimal combination is named optimally merged satellite-based precipitation (OMSBP). The root mean square error (RMSE), coefficient correlation (CC), and the Nash–Sutcliffe error (NSE) are employed to test the proposed method with precipitation data for the Tehran urban region, Iran. The spatially resolved results over the studied urban area establish that TMPA-3B42, with an average value MAE, MBE, and RMSE equal to 0.68 mm, − 0.31 mm, and 2.94 mm, leads to better estimates of precipitation than those of PERSIANN-CDR, IMERG, and GSMaP MKV. Moreover, algorithms alg7 and alg8 yielded better results with respect to the MAE and MBE, respectively. Lastly, algorithm alg3 produced better results than alg7 and alg8 based on the RMSE, NSE, and CC corresponding to precipitation predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

All of the required data have been presented in our article.

Code availability

Any code used in this paper is available upon request.

References

  • AghaKouchak A, Mehran A, Norouzi H, Behrangi A (2012) Systematic and random error components in satellite precipitation data sets. Geophys Res Lett, 39(9)

  • Aonashi K, Awaka J, Hirose M, Kozu T, Kubota T, Liu G, ... Takayabu YN (2009) “GSMaP passive microwave precipitation retrieval algorithm: algorithm description and validation.” J Meteorol Soc Japan. Ser. II, 87, 119-136

  • Ashouri H, Hsu KL, Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., ... & Prat, O. P. (2015). “PERSIANN-CDR: daily precipitation climate data record from multi-satellite observations for hydrological and climate studies.” Bulletin of the American Meteorological Society, 96(1), 69-83

  • Awange JL, Hu KX, Khaki M (2019) The newly merged satellite remotely sensed, gauge and reanalysis-based multi-source weighted-ensemble precipitation: evaluation over Australia and Africa (1981–2016). Sci Total Environ 670:448–465

    Article  Google Scholar 

  • Bazaraa MS, Sherali HD, Shetty CM (2013) Nonlinear programming: theory and algorithms. John Wiley & Sons

    Google Scholar 

  • Beck HE, Van Dijk AI, Levizzani V, Schellekens J, Gonzalez Miralles D, Martens B, De Roo A (2017) MSWEP: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol Earth Syst Sci 21(1):589–615

    Article  Google Scholar 

  • Belabid N, Zhao F, Brocca L, Huang Y, Tan Y (2019) Near-real-time flood forecasting based on satellite precipitation products. Remote Sensing 11(3):252

    Article  Google Scholar 

  • Chao L, Zhang K, Yang Z, Wang J, Lin P, Liang J,... Gu Z (2021) Improving flood simulation capability of the WRF-Hydro-RAPID model using a multi-source precipitation merging method. J hydrol (Amsterdam), 592, 125814

  • Chawla I, Karthikeyan L, Mishra AK (2020) A review of remote sensing applications for water security: quantity, quality, and extremes. J Hydrol 585:124826

    Article  Google Scholar 

  • Delfani S, Karami M, Pasdarshahri H (2010) The effects of climate change on energy consumption of cooling systems in Tehran. Energy and Buildings 42(10):1952–1957

    Article  Google Scholar 

  • Dembélé M, Zwart SJ (2016) Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. Int J Remote Sens 37(17):3995–4014

    Article  Google Scholar 

  • Derin Y, Anagnostou E, Berne A, Borga M, Boudevillain B, Buytaert W, ... Lavado-Casimiro W (2016) “Multiregional satellite precipitation products evaluation over complex terrain.” J Hydrometeorol, 17(6): 1817-1836

  • Duan W, Maskey S, Chaffe PLB, Luo P, He B, Wu Y, Hou J (2021) Recent advancement in remote sensing technology for hydrology analysis and water resources management. Remote Sensing 13(6):1097

    Article  Google Scholar 

  • Duan Z, Liu J, Tuo Y, Chiogna G, Disse M (2016) Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci Total Environ 573:1536–1553

    Article  Google Scholar 

  • Ebert EE (2007) Methods for verifying satellite precipitation estimates. In Measuring precipitation from space. Springer, Dordrecht, pp 345–356

    Book  Google Scholar 

  • Foufoula-Georgiou E, Guilloteau C, Nguyen P, Aghakouchak A, Hsu KL, Busalacchi A, ... Levizzani V (2020) Advancing precipitation estimation, prediction, and impact studies. Bull Am Meteorol Soc 101(9): E1584-E1592

  • Golian S, Moazami S, Kirstetter PE, Hong Y (2015) Evaluating the performance of merged multi-satellite precipitation products over a complex terrain. Water Resour Manage 29(13):4885–4901

    Article  Google Scholar 

  • Guilloteau C, Roca R, Gosset M (2016) A multiscale evaluation of the detection capabilities of high-resolution satellite precipitation products in West Africa. J Hydrometeorol 17(7):2041–2059

    Article  Google Scholar 

  • Hazra A, Maggioni V, Houser P, Antil H, Noonan M (2019) A Monte Carlo-based multi-objective optimization approach to merge different precipitation estimates for land surface modeling. J Hydrol 570:454–462

    Article  Google Scholar 

  • Huang Y, Chen S, Cao Q, Hong Y, Wu BW, Huang MY, Qiao L, Zhang ZX, Li Z, Yang XQ (2014) Evaluation of version-7 TRMM multi-satellite precipitation analysis product during the Beijing extreme heavy rainfall event of 21 July 2012. Water 6:32–44

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, ... Stocker EF (2007) “The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales.” J hydrometeorol 8(1): 38-55

  • Huffman G, Bolvin D, Braithwaite D, Hsu K, Joyce R, Xie P (2015) “Integrated multi-satellite retrievals for GPM (IMERG), version 4.4.” NASA’s Precipitation Processing Center

  • Isnain Z, Ghaffar SNA (2021) Using the geographical information system (gis) and remote sensing techniques for mapping the groundwater potential zones in kg Timbang Dayang, Kota Belud Sabah. Water Conserv Manag 4(1):57–60. https://doi.org/10.26480/WCM.01.2020.57.60

    Article  Google Scholar 

  • Jiang Q, Li W, Wen J, Qiu C, Sun W, Fang Q, ... Tan J (2018) “Accuracy evaluation of two high-resolution satellite-based rainfall products: TRMM 3B42V7 and CMORPH in Shanghai.” Water 10(1), 40

  • Jiang S, Liu S, Ren L, Yong B, Zhang L, Wang M, ... He Y (2017) “Hydrologic evaluation of six high-resolution satellite precipitation products in capturing extreme precipitation and streamflow over a medium-sized basin in China.” Water 10(1): 25

  • Keikhosravi Q (2019) The effect of heat waves on the intensification of the heat island of Iran’s metropolises (Tehran, Mashhad, Tabriz, Ahvaz). Urban Climate 28:100453

    Article  Google Scholar 

  • Khairul I, Mastrantonas N, Rasmy M, Koike T, Takeuchi K (2018) Inter-comparison of gauge-corrected global satellite rainfall estimates and their applicability for effective water resource management in a transboundary river basin: the case of the Meghna River basin. Remote Sensing 10(6):828

    Article  Google Scholar 

  • Khan A, Koch M, Chinchilla K (2018) Evaluation of gridded multi-satellite precipitation estimation (TRMM-3B42-V7) performance in the upper Indus Basin (UIB). Climate 6(3):76

    Article  Google Scholar 

  • Kim K, Park J, Baik J, Choi M (2017) Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia. Atmos Res 187:95–105

    Article  Google Scholar 

  • Kim Y, Kimball JS, Zhang K, Didan K, Velicogna I, McDonald KC (2014) Attribution of divergent northern vegetation growth responses to lengthening non-frozen seasons using satellite optical-NIR and microwave remote sensing. Int J Remote Sens 35(10):3700–3721

    Article  Google Scholar 

  • Kubota T, Shige S, Hashizume H, Aonashi K, Takahashi N, Seto S, ... Okamoto KI (2007) “Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: production and validation.” IEEE Transactions on Geosci Remote Sens 45(7): 2259-2275

  • Li W, He X, Sun W, Scaioni M, Yao D, Fu J, ... Cheng G (2019) “Evaluating three satellite-based precipitation products of different spatial resolutions in Shanghai based on upscaling of rain gauge.” Int J Remote Sens 40(15): 5875-5891

  • Liu R, Ma Y, Yang Y, Han Z, Tang G, Liu Q, Hong Y (2017) Error analysis of ensemble multi-satellite precipitation datasets over the Tibetan Plateau. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 4684–4687). IEEE

  • Liu Y, Zhang K, Li Z, Liu Z, Wang J, Huang P (2020) A hybrid runoff generation modeling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds. J Hydrol 590:125440

    Article  Google Scholar 

  • Lu X, Tang G, Wei M, Yang L, Zhang Y (2018) Evaluation of multi-satellite precipitation products in Xinjiang, China. Int J Remote Sens 39(21):7437–7462

    Article  Google Scholar 

  • Ma Y, Hong Y, Chen Y, Yang Y, Tang G, Yao Y, ... Liu R (2018) “Performance of optimally merged multisatellite precipitation products using the dynamic Bayesian model averaging scheme over the Tibetan Plateau.” J Geophys Res: Atmos 123(2): 814-834

  • Maggioni V, Meyers PC, Robinson MD (2016) A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era. J Hydrometeorol 17(4):1101–1117

    Article  Google Scholar 

  • Mahmood GG, Rashid H, Anwar S, Nasir A (2019) Evaluation of climate change impacts on rainfall patterns in the Pothohar region of Pakistan. Water Conservation and Management 3(1):1–6. https://doi.org/10.26480/wcm.01.2019.01.06

    Article  Google Scholar 

  • Mahtab MH, Ohara M, Rasmy M (2018) The impact of rainfall variations on flash flooding in haor areas in Bangladesh. Water Conservation and Management 2(2):6–10. https://doi.org/10.26480/wcm.02.2018.06.10

    Article  Google Scholar 

  • Mastrantonas N, Bhattacharya B, Shibuo Y, Rasmy M, Espinoza-Dávalos G, Solomatine D (2019) Evaluating the benefits of merging near-real-time satellite precipitation products: a case study in the Kinu basin region, Japan. J Hydrometeorol 20(6):1213–1233

    Article  Google Scholar 

  • Nie S, Wu T, Luo Y, Deng X, Shi X, Wang Z, ... Huang J (2016) “A strategy for merging objective estimates of global daily precipitation from gauge observations, satellite estimates, and numerical predictions.” Adv Atmos Sci 33(7): 889-904

  • Ogato GS, Bantider A, Abebe K, Geneletti D (2020) Geographic information system (GIS)-Based multicriteria analysis of flooding hazard and risk in Ambo Town and its watershed, West Shoa zone, Oromia Regional State Ethiopia. J Hydrol Regional Studies 27:100659

    Article  Google Scholar 

  • Oliazadeh A, Bozorg-Haddad O, Mani M, Chu X (2021) Developing an urban runoff management model by using satellite precipitation datasets to allocate low impact development systems under climate change conditions. Theoret Appl Climatol 146(1):675–687

    Article  Google Scholar 

  • Ren M, Xu Z, Pang B, Liu W, Liu J, Du L, Wang R (2018) Assessment of satellite-derived precipitation products for the Beijing region. Remote Sensing 10(12):1914

    Article  Google Scholar 

  • Salio P, Hobouchian MP, Skabar YG, Vila D (2015) Evaluation of high-resolution satellite precipitation estimates over southern South America using a dense rain gauge network. Atmos Res 163:146–161

    Article  Google Scholar 

  • Shahbazi H, Taghvaee S, Hosseini V, Afshin H (2016) A GIS-based emission inventory development for Tehran. Urban Climate 17:216–229

    Article  Google Scholar 

  • Sharifi E, Steinacker R, Saghafian B (2016) Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: preliminary results. Remote Sensing 8(2):135

    Article  Google Scholar 

  • Smith B, Rodriguez S (2017) Spatial analysis of high-resolution radar rainfall and citizen-reported flash flood data in ultra-urban New York City. Water 9(10):736

    Article  Google Scholar 

  • Sun Q, Miao C, Duan Q, Ashouri H, Sorooshian S, Hsu KL (2018) A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev Geophys 56(1):79–107

    Article  Google Scholar 

  • Tang L, Tian Y, Yan F, Habib E (2015) An improved procedure for the validation of satellite-based precipitation estimates. Atmos Res 163:61–73

    Article  Google Scholar 

  • Tian Y, Huffman GJ, Adler RF, Tang L, Sapiano M, Maggioni V, Wu H (2013) Modeling errors in daily precipitation measurements: additive or multiplicative? Geophys Res Lett 40(10):2060–2065

    Article  Google Scholar 

  • Tiwari S, Jha SK, Singh A (2020) Quantification of node importance in rain gauge network: influence of temporal resolution and rain gauge density. Sci Rep 10(1):1–17

    Article  Google Scholar 

  • Vu T, Li L, Jun K (2018) Evaluation of multi-satellite precipitation products for streamflow simulations: a case study for the Han River basin in the Korean Peninsula, East Asia. Water 10(5):642

    Article  Google Scholar 

  • Wang K, Li S (2021) Robust distributed modal regression for massive data. Comput Stat Data Anal 160:107225

    Article  Google Scholar 

  • Wang K, Wang H, Li S (2021) Renewable quantile regression for streaming datasets. Knowledge-Based Systems 107675

  • Wei G, Lü H, Crow WT, Zhu Y, Wang J, Su J (2018) Evaluation of satellite-based precipitation products from IMERG V04A and V03D, CMORPH and TMPA with gauged rainfall in three climatologic zones in China. Remote Sens 10(1):30

    Google Scholar 

  • Yang D, Yang A, Qiu H, Zhou Y, Herrero H, Fu CS, ... Tang J (2019) A citizen-contributed GIS approach for evaluating the impacts of land use on hurricane-Harvey-induced flooding in Houston area. Land 8(2): 25

  • Yang XQ, Geng WJ (2016) Accuracy evaluation of TRMM-based multi-satellite precipitation in Huai river basin. Water Resources and Power 7:1–5

    Google Scholar 

  • Yang Z, Hsu K, Sorooshian S, Xu X, Braithwaite D, Zhang Y, Verbist KM (2017) Merging high-resolution satellite-based precipitation fields and point-scale rain gauge measurements—a case study in Chile. Journal of Geophysical Research: Atmospheres 122(10):5267–5284

    Article  Google Scholar 

  • Zhang A, Xiao L, Min C, Chen S, Kulie M, Huang C, Liang Z (2019a) Evaluation of latest GPM-Era high-resolution satellite precipitation products during the May 2017 Guangdong extreme rainfall event. Atmos Res 216:76–85

    Article  Google Scholar 

  • Zhang K, Ali A, Antonarakis A, Moghaddam M, Saatchi S, Tabatabaeenejad A,... Moorcroft P (2019c) The sensitivity of north American terrestrial carbon fluxes to Spatial and temporal variation in soil moisture: an analysis using radar‐derived estimates of root‐zone soil moisture. J geophys res Biogeosci 124(11): 3208-3231

  • Zhang K, Chao L, Wang Q, Huang Y, Liu R, Hong Y,... Ye J (2019a) Using multi-satellite microwave remote sensing observations for retrieval of daily surface soil moisture across China. Water Sci Eng 12(2): 85-97 https://doi.org/10.1016/j.wse.2019.06.001

  • Zhang K, Wang Q, Chao L, Ye J, Li Z, Yu Z,... Ju Q (2019b) Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China. J hydrol (Amsterdam), 574: 903-914

  • Zhu Q, Gao X, Xu YP, Tian Y (2019) Merging multi-source precipitation products or merging their simulated hydrological flows to improve streamflow simulation. Hydrol Sci J 64(8):910–920

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Iran’s National Science Foundation (INSF) for its support of this research.

Author information

Authors and Affiliations

Authors

Contributions

Arman Oliazadeh: software, formal analysis, writing — original draft.

Omid Bozorg-Haddad: conceptualization, supervision, project administration.

Morteza Pakdaman: software, formal analysis, writing — original draft.

Ramin Baghbani: software, formal analysis, writing — original draft.

Hugo A. Loáiciga: validation, writing, equations — review and editing.

Corresponding author

Correspondence to Omid Bozorg-Haddad.

Ethics declarations

Ethics approval

All authors accept all ethical approvals.

Consent to participate

All authors consent to participate.

Consent for publication

All authors consent to publish.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliazadeh, A., Bozorg-Haddad, O., Pakdaman, M. et al. Optimal merging of multi-satellite precipitation data in urban areas. Theor Appl Climatol 147, 1697–1712 (2022). https://doi.org/10.1007/s00704-021-03895-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-021-03895-4

Navigation