Skip to main content

Advertisement

Log in

Spatiotemporal changes in extreme ground surface temperatures and the relationship with air temperatures in the Three-River Source Regions during 1980–2013

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Climate changes are affecting plant growth, ecosystem evolution, hydrological processes, and water resources in the Three-River Source Regions (TRSR). Daily ground surface temperature (GST) and air temperature (Ta) recordings from 12 meteorological stations illustrated trends and characteristics of extreme GST and Ta in the TRSR during 1980–2013. We used the Mann-Kendall test and Sen’s slope estimate to analyze 12 temperature extreme indices as recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The mean annual ground surface temperatures (MAGST) are 2.4–4.3 °C higher than the mean annual air temperatures (MAAT) in the TRSR. The increasing trends of the MAGST are all higher than those of the MAAT. The multi-year average maximum GST (28.1 °C) is much higher than that of the Ta (7.6 °C), while the minimum GST (−8.7 °C) is similar to that of the minimum Ta (−6.9 °C). The minimum temperature trends are more significant than those of the maximum temperature and are consistent with temperature trends in other regions of China. Different spatiotemporal patterns of GST extremes compared to those of Ta may result from greater warming of the ground surface. Consequently, the difference between the GST and Ta increased. These findings have implications for variations of surface energy balance, sensible heat flux, ecology, hydrology, and permafrost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Cao LG, Pan SM (2014) Changes in precipitation extremes over the “Three-River Headwaters” region, hinterland of the Tibetan Plateau, during 1960–2012. Quat Int 321:105–115. doi:10.1016/j.quaint.2013.12.041

    Article  Google Scholar 

  • Duan AM, Wu GX (2005) Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim Dyn 24:793–807. doi:10.1007/s00382-004-0488-8

    Article  Google Scholar 

  • French HM (2007) The periglacial environment, 3rd edn. John Wiley & Sons Ltd, England, p. 458

    Book  Google Scholar 

  • Gądek B, Leszkiewicz (2012) Impact of climate warming on the ground surface temperature in the sporadic permafrost zone of the Tatra Mountains, Poland and Slovakia. Cold Reg Sci Technol 79–81:75–83. doi:10.1016/j.coldregions.2012.03.006

  • Hu GY, Dong ZB, Lu JF, Yan CZ (2012a) Driving forces responsible for aeolian desertification in the source region of the Yangtze River from 1975 to 2005. Environ Earth Sci 66:257–263. doi:10.1007/s12665-011-1235-1

    Article  Google Scholar 

  • Hu YR, Maskey S, Uhlenbrook S (2012b) Trends in temperature and rainfall extremes in the Yellow River source region, China. Clim Chang 110:403–429. doi:10.1007/s10584-011-0056-2

    Article  Google Scholar 

  • Hu GY, Jin HJ, Dong ZB, Lu JF, Yan CZ (2013) Driving forces of aeolian desertification in the source region of the Yellow River: 1975–2005. Environ Earth Sci 70:3245–3254. doi:10.1007/s12665-013-2389-9

    Article  Google Scholar 

  • Immerzeel WW, Van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385

    Article  Google Scholar 

  • Ishikawa (2003) Thermal regimes at the snow-ground interface and their implications for permafrost investigation. Geomorphology 52:105–120. doi:10.1016/S0169-555X(02)00251-9

    Article  Google Scholar 

  • Jiang L, Li NN, Fu ZT, Zhang JP (2015) Long-range correlation behaviors for the 0-cm average ground surface temperature and average air temperature over China. Theor Appl Climatol 119:25–31. doi:10.1007/s00704-013-1080-0

    Article  Google Scholar 

  • Jin HJ, He RX, Cheng GD, Wu QB, Wang SL, Lü LZ, Chang XL (2009) Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environ Res Lett 4:045206. doi:10.1088/1748-9326/4/4/045206

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London

    Google Scholar 

  • Li SD, Cheng GD (1996) Permafrost distribution map on the Qinghai-Xizang Plateau. Gansu Culture Press, Lanzhou

    Google Scholar 

  • Li SX, Wu TH (2005) The relationship between air temperature and ground temperature in the Tibetan Plateau. J Glaciol Geocryol 27(5):627–632(in Chinese)

    Google Scholar 

  • Li N, Wang GX, Gao YH, Wang JF, Liu LA (2010) Effects of simulated warming on soil nutrients and biological characteristics of alpine meadow soil in the Headwaters region of the Yangtze River. Acta Pedol Sin 47(6):1214–1224(in Chinese)

    Google Scholar 

  • Li ZX, Feng Q, Zhang W, He YQ, Wang XF, Norm C, An WL, Du JK, Chen AF, Liu L, Hu M (2012a) Decreasing trend of sunshine hours and related driving forces in southwestern China. Theor Appl Climatol 109:305–321. doi:10.1007/s00704-012-0583-4

    Article  Google Scholar 

  • Li ZX, He YQ, Wang PY, Theakstone WH, An WL, Wang XF, Lu AG, Zhang W, Cao WH (2012b) Changes of daily climate extremes in southwestern China during 1961–2008. Glob Planet Chang 80–81:255–272. doi:10.1016/j.gloplacha.2011.06.008

    Google Scholar 

  • Li R, Zhao L, Wu TH, Ding YJ, Xiao Y, Hu GJ, Zou DF, Li WP, Yu WJ, Jiao YL, Qin YH (2014) The impact of surface energy exchange on the thawing process of active layer over the northern Qinghai-Xizang Plateau, China. Environ Earth Sci 72:2091–2099. doi:10.1007/s12665-014-3117-9

  • Liang K, Bai P, Li JJ, Liu CM (2014) Variability of temperature extremes in the Yellow River basin during 1961–2011. Quat Int 336:52–64. doi:10.1016/j.quaint.2014.02.007

    Article  Google Scholar 

  • Liu XD, Yin ZY, Shao X, Qin N (2006) Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003. J Geophys Res 111:D19019. doi:10.1029/2005JD006915

    Google Scholar 

  • Liu XF, Zhang JS, Zhu XF, Pan YZ, Liu YX, Zhang DH, Lin ZH (2014) Spatiotemporal changes in vegetation coverage and its driving factors in the Three-River Headwaters Region during 2000–2011. J Geogr Sci 24(2):288–302

    Article  Google Scholar 

  • Luo DL, Jin HJ (2014) Variations of air temperature and precipitation from 1953 to 2012 in the Madoi station in the sources areas of the Yellow River. J Arid Land Resour Environ 28(11):185–192(in Chinese)

    Google Scholar 

  • Luo DL, Jin HJ, Lin L, He RX, Yang SZ, Chang XL (2012) New progress on permafrost temperature and thickness in the source area of the Huanghe River. Sci Geogr Sin 32(7):898–904(in Chinese)

    Google Scholar 

  • Luo DL, Jin HJ, Jin R, Yang XG, Lü LZ (2014a) Spatiotemporal variations of climate warming in northern Northeast China as indicated by freezing and thawing indices. Quat Int 349:187–195. doi:10.1016/j.quaint.2014.06.064

    Article  Google Scholar 

  • Luo DL, Jin HJ, Lü LZ, Wu QB (2014b) Spatiotemporal characteristics of freezing and thawing of the active layer in the source areas of the Yellow River (SAYR). Chin Sci Bull 59(24):3034–3045. doi:10.1007/s11434-014-0189-6

    Article  Google Scholar 

  • Nelson FE, Shiklomanov NI, Mueller GR, Hinkel KM, Walker DA, Bockheim JG (1997) Estimating active-layer thickness over a large region: Kuparuk River basin, Alaska, U.S.A. Arctic Alpine Res 29:367–378

  • Qian S, Fu Y, Pan FF (2010) Climate change tendency and grassland vegetation response during the growth season in Three-River Source Region. Sci China Earth Sci 53(10):1506–1512. doi:10.1007/s11430-010-4064-2

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Article  Google Scholar 

  • Shen MG, Sun ZZ, Wang SP, Zhang GX, Kong WD, Chen AP, Piao SL (2013) No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade. Proc Natl Acad Sci U S A 110(26):E2329. doi:10.1073/pnas.1304625110

    Article  Google Scholar 

  • Tong LG, Xu XL, Fu Y, Li S (2014) Wetland changes and their responses to climate change in the “Three-River Headwaters” Region of China since the 1990s. Energy 7:2515–2534. doi:10.3390/en7042515

    Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  Google Scholar 

  • Wang J, Bras RL (1999) Ground heat flux estimated from surface soil temperature. J Hydrol 216:214–226

    Article  Google Scholar 

  • Wang XH, Piao SL, Ciais P, Li JS, Friedlingstein P, Koven C, Chen AP (2011) Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc Natl Acad Sci U S A 108(4):1240–1245. doi:10.1073/pnas.1014425108

    Article  Google Scholar 

  • Wang YL, Wang X, Li CH, Wu FF, Yang ZF (2015) Spatiotemporal analysis of temperature trends under climate change in the source region of the Yellow River, China. Theor Appl Climatol 119:123–133. doi:10.1007/s00704-014-1112-4

    Article  Google Scholar 

  • Westermann S, Langer M, Boike J (2011) Spatial and temporal variations of summer surface temperatures of high-arctic tundra on Svalbard—implications for MODIS LST based permafrost monitoring. Remote Sens Environ 115:908–922. doi:10.1016/j.rse.2010.11.018

    Article  Google Scholar 

  • Wu TH, Wang QX, Zhao L, Batkhishig O, Watanabe M (2011) Observed trends in surface freezing/thawing index over the period 1987–2005 in Mongolia. Cold Reg Sci Technol 69:105–111. doi:10.1016/j.coldregions.2011.07.003

    Google Scholar 

  • Wu TH, Zhao L, Li R, Wang QX, Xie CW, Pang QQ (2013) Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau. Int J Climatol 33(4):920–930. doi:10.1002/joc.3479

    Article  Google Scholar 

  • Xu XZ, Fu LD (1983) The calculation of some parameters about ground-air system and the determination of maximum seasonally thawing depth. Proceedings of the Second Chinese Conference on Permafrost. Lanzhou, Gansu People’s Publishing House: 108–128

  • Xu WX, Gu S, Zhao XQ, Xiao JS, Tang YH, Fang JY, Zhang J, Jiang S (2011) High positive correlation between soil temperature and NDVI from 1982 to 2006 in alpine meadow of the Three-River Source Region on the Qinghai-Tibetan Plateau. Int J Appl Earth Obs Geoinf 13(4):528–535. doi:10.1016/j.jag.2011.02.001

    Article  Google Scholar 

  • Yi XS, Yin YY, Li GS, Peng JT (2011) Temperature variation in recent 50 years in the Three-River Headwaters Region of Qinghai Province. Acta Geograph Sin 66(11):1451–1465(in Chinese)

    Google Scholar 

  • Yi XS, Li GS, Yin YY (2013) Spatio-temporal variation of precipitation in the Three-River Headwater Region from 1961 to 2010. J Geogr Sci 23(3):447–464

    Article  Google Scholar 

  • Yin F, Deng XZ, Jin Q, Yuan YW, Zhao CH (2014) The impacts of climate change and human activities on grassland productivity in Qinghai Province, China. Front Earth Sci China 8(1):93–103

    Article  Google Scholar 

  • You QL, Kang SC, Aguilar E, Yan YP (2008) Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J Geophys Res 113:D07101. doi:10.1029/2007JD009389

    Google Scholar 

  • Zhang TJ (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43:RG4002. doi:10.1029/2004RG000157

    Google Scholar 

  • Zhang SF, Jia SF, Liu CM, Cao WB, Hao FH, Liu JY, Yan HY (2004) Study on the changes of water cycle and its impacts in the source region of the Yellow River. Sci China Ser E Technol Sci 47(Supp):142–151

    Article  Google Scholar 

  • Zhang GL, Zhang YJ, Dong JW, Xiao XM (2013) Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc Natl Acad Sci U S A 110(11):4309–4314. doi:10.1073/pnas.1210423110

    Article  Google Scholar 

  • Zhao L, Cheng GD, Li SX, Zhao XM, Wang SL (2000) Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau. Chin Sci Bull 45(23):2181–2187

    Article  Google Scholar 

  • Zhou LT, Huang RH (2014) Regional differences in surface sensible and latent heat fluxes in China. Theor Appl Climatol 116:625–637. doi:10.1007/s00704-013-0975-0

    Article  Google Scholar 

Download references

Acknowledgments

We thank the reviewers for their constructive and insightful comments and suggestions. We also thank Geoffrey Gay for improving the English. This work was supported by the National Natural Science Foundation (NSF) of China (41301068), Chinese Academy of Sciences (CAS) Key Research Program (KZZD-EW-13), and Excellent Youth Scholars Fund of CAREERI, CAS (51Y351051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongliang Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, D., Jin, H., Lü, L. et al. Spatiotemporal changes in extreme ground surface temperatures and the relationship with air temperatures in the Three-River Source Regions during 1980–2013. Theor Appl Climatol 123, 885–897 (2016). https://doi.org/10.1007/s00704-015-1543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1543-6

Keywords

Navigation