Skip to main content
Log in

Determination of aerodynamic parameters of urban surfaces: methods and results revisited

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Estimates of aerodynamic parameters, in particular roughness length z 0 and displacement height d, are important for the analysis of the roughness of an urban surface, which affects processes that occur within the urban boundary layer such as pollutant dispersion and urban ventilation. Findings regarding the aerodynamic effects of various configurations of urban arrays were compiled from various studies. Several experimental, numerical and semi-empirical studies to estimate z 0 and d were reviewed and compared with each other. The results can be summarized as follows: (1) the influence of the frontal area index (λ f ) on z 0 is significant and their relationship has been confirmed by both experimental and numerical data; (2) compared to one-parameter and two-parameter fitting methods, the three-parameter fitting method is the least accurate; (3) the physical meaning of d remains vague because its definition as the height where surface drag acts may not be accurate for sharp-edged roughness blocks and (4) the peak values of z 0 for uniform and heterogeneous block heights indicate presence of skimming or wake-interference flow effects, which may influence surface roughness. Finally, the semi-empirical models were found to be limited to cases derived from available experimental data, which normally involve uniform arrays of cubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd Razak A, Hagishima A, Ikegaya N, Tanimoto J (2012) Analysis of airflow over building arrays for assessment of urban wind environment. Build Environ 59:56–65. doi:10.1016/j.buildenv.2012.08.007

    Article  Google Scholar 

  • Akins RE, Peterka JA, Cermak JE (1977) Mean force and moment coefficients for buildings in turbulent boundary layers. J Wind Eng Ind Aerodyn 2:195–209

    Article  Google Scholar 

  • Bao JW, Michelson SA, Wilczak JM (2002) Sensitivity of numerical simulations of parameterizations of roughness for surface heat fluxes at high winds over the sea. AMS Mon Weather Rev 130

  • Boppana VBI, Xie ZT, Castro IP (2010) Large-eddy simulation of dispersion from surface sources in arrays of obstacles. Boundary-Layer Meteorol 135:433–454. doi:10.1007/s10546-010-9489-9

    Article  Google Scholar 

  • Bottema M (1995) Parameterization of aerodynamic roughness parameters in relation with air pollutant removal efficiency of streets. Environ Trans Ecol 6:2–9

    Google Scholar 

  • Bottema M (1996) Roughness parameters over regular rough surfaces: experimental requirements and model validation. J Wind Eng Ind Aerodyn 64:249–265

    Article  Google Scholar 

  • Cao M, Lin Z (2014) Impact of urban surface roughness length parameterization scheme on urban atmospheric environment simulation. J App Math Article ID: 267683

  • Cheng H, Castro IP (2002) Near wall flow over urban-like roughness. Boundary-Layer Meteorol 104:229–259

    Article  Google Scholar 

  • Cheng H, Hayden P, Robins AG, Castro IP (2007) Flow over cube arrays of different packing densities. J Wind Eng Ind Aerodyn 95:715–740. doi:10.1016/j.jweia.2007.01.004

    Article  Google Scholar 

  • Claus J, Coceal O, Thomas TG, Branford S, Belcher SE, Castro IP (2012) Wind-direction effects on urban-type flows. Boundary-Layer Meteorol 142:265–287. doi:10.1007/s10546-011-9667-4

    Article  Google Scholar 

  • Clauser FH (1956) The turbulent boundary layer. Adv Appl Mech 4:1–51

    Article  Google Scholar 

  • Coceal O, Thomas TG, Castro IP, Belcher SE (2006) Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary-Layer Meteorol 121:491–519. doi:10.1007/s10546-006-9076-2

    Article  Google Scholar 

  • Coceal O, Goulart EV, Branford S, Thomas TG, Belcher SE (2014) Flow structure and near-field dispersion in arrays of building-like obstacles. J Wind Eng Ind Aerodyn 125:52–68

    Article  Google Scholar 

  • Coles DE (1956) The law of the wake in the turbulent boundary layers. J Fluid Mech 1:191–226

    Article  Google Scholar 

  • Counihan J (1971) Wind tunnel determination of the roughness length as a function of the fetch and the roughness density of three-dimensional roughness elements. Atmos Environ 5:637–642

    Article  Google Scholar 

  • Di Sabatino S, Solazzo E, Paradisi P, Britter R (2008) A simple model for spatially-averaged wind profiles within and above an urban canopy. Boundary-Layer Meteorol 127:131–151. doi:10.1007/s10546-007-9250-1

    Article  Google Scholar 

  • ESDU (1980) Mean fluid forces and moments on rectangular prisms: surface-mounted structures in turbulent shear flow. Engineering Sciences Data Item Number 80003

  • Farell C, Iyengar AKS (1999) Experiments on the wind tunnel simulation of atmospheric boundary layers. J Wind Eng Ind Aerodyn 79:11–35. doi:10.1016/S0167-6105(98)00117-2

    Article  Google Scholar 

  • Garrat JR (1992) The atmospheric boundary layer. Cambridge University Press, Melbourne

    Google Scholar 

  • Hagishima A, Tanimoto J, Nagayama K (2009) Aerodynamic parameters of regular arrays of rectangular blocks with various geometries. Boundary-Layer Meteorol 132:315–337. doi:10.1007/s10546-009-9403-5

    Article  Google Scholar 

  • Hama FR (1954) Boundary layer characteristics for smooth and rough surfaces. Trans Soc Nav Archit Mar Eng 62:333–358

    Google Scholar 

  • Huq P, Franzese P (2012) Measurements of turbulence and dispersion in three idealized urban canopies with different aspect ratios and comparisons with a Gaussian plume model. Boundary-Layer Meteorol 147:103–121. doi:10.1007/s10546-012-9780-z

    Article  Google Scholar 

  • Iyengar AKS, Farell C (2001) Experimental issues in atmospheric boundary layer simulations: roughness length and integral length scale determination. J Wind Eng Ind Aerodyn 89:1059–1080

    Article  Google Scholar 

  • Jackson PS (1981) On the displacement height in the logarithmic velocity profile. J Fluid Mech 111:15–25

    Article  Google Scholar 

  • Jiang D, Jiang W, Liu H, Sun J (2008) Systematic influence of different building spacing, height, and layout on mean wind and turbulent characteristics within and over building arrays. Wind Struct 11:275–289

    Article  Google Scholar 

  • Jiang X, Lai C (2009) Numerical techniques for direct and large-eddy simulations. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kanda M, Moriwaki RYO, Kasamatsu F (2004) Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorol 112:343–368

    Article  Google Scholar 

  • Kanda M, Moriizumi T (2009) Momentum and heat transfer over urban-like surfaces. Boundary-Layer Meteorol 131:385–401

    Article  Google Scholar 

  • Kanda M, Inagaki A, Miyamoto T, Gryschka M, Raasch S (2013) A new aerodynamic parameterization for real urban surfaces. Boundary-Layer Meteorol 148:357–377. doi:10.1007/s10546-013-9818-x

    Article  Google Scholar 

  • Kutzbach J (1961) Investigations of the modification of wind profiles by artificially controlled surface roughness. Studies of the three dimensional structure of the planetary boundary layer. Annu Rep 1961, Dept. of Meteorology, University of Wisconsin, Madison, 71–113

  • Leonardi S, Orlandi P, Smalley RJ, Djenidi L, Antonia RA (2003) Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J Fluid Mech 491:229–238. doi:10.1017/S0022112003005500

    Article  Google Scholar 

  • Leonardi S, Castro IP (2010) Channel flow over large cube roughness: a direct numerical simulation study. J Fluid Mech 651:519–539. doi:10.1017/S002211200999423X

    Article  Google Scholar 

  • Lettau H (1969) Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description. J Appl Meteorol 8:828–832

    Article  Google Scholar 

  • Macdonald RW, Griffiths RF, Hall DJ (1998) An improved method for the estimation of surface roughness of obstacle arrays. Atmos Environ 32:1857–1864. doi:10.1016/S1352-2310(97)00403-2

    Article  Google Scholar 

  • Macdonald RW (2000) Modelling the mean velocity profile in the urban canopy layer. Boundary-Layer Meteorol 97:25–45

    Article  Google Scholar 

  • Millward-Hopkins JT, Tomlin AS, Ma L, Ingham D, Pourkashanian M (2011) Estimating aerodynamic parameters of urban-like surfaces with heterogeneous building heights. Boundary-Layer Meteorol 141:443–465. doi:10.1007/s10546-011-9640-2

    Article  Google Scholar 

  • Millward-Hopkins JT, Tomlin AS, Ingham DB, Pourkashanian M (2012) Aerodynamic parameters of a UK city derived from morphological data. Boundary-Layer Meteorol 146:447–468. doi:10.1007/s10546-012-9761-2

    Article  Google Scholar 

  • Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, New York

    Google Scholar 

  • Padhra A (2010) Estimating the sensitivity of urban surface drag to building morphology. Dissertation, University of Reading

  • Raupach MR (1992) Drag and drag partition on rough surfaces. Boundary-Layer Meteorol 60:375–395. doi:10.1007/BF00155203

    Article  Google Scholar 

  • Raupach MR, Hughes DE, Cleugh HA (2006) Momentum absorption in rough-wall boundary layers with sparse roughness elements in random and clustered distributions. Boundary-Layer Meteorol 120:201–218. doi:10.1007/s10546-006-9058-4

    Article  Google Scholar 

  • Salizzoni P, Soulhac L, Mejean P (2008) Street canyon ventilation and atmospheric turbulence. Atmos Env 43:5056–5067. doi:10.1016/j.atmosenv.2009.06.045

    Article  Google Scholar 

  • Santiago JL, Coceal O, Martilli A, Belcher SE (2008) Variation of the sectional drag coefficient of a group of buildings with packing density. Boundary-Layer Meteorol 128:445–457. doi:10.1007/s10546-008-9249-x

    Article  Google Scholar 

  • Solazzo E, Di Sabatino S, Aquilina N, Dudek A, Britter R (2010) Coupling mesoscale modelling with a simple urban model: the Lisbon case study. Boundary-Layer Meteorol. doi:10.1007/s10546-010-9536-6

    Google Scholar 

  • Snyder WH, Castro IP (2002) The critical Reynolds number for rough-wall boundary layers. J Wind Eng Ind Aerodyn 90:41–54

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Theurer W, Baechlin W, Plate EJ (1992) Model study of the development of boundary layers above urban areas. J Wind Eng Ind Aerodyn 41:437–448

    Article  Google Scholar 

  • Thom AS (1971) Momentum absorption by vegetation. Quart J R Meteorol Soc 97:414–428

    Article  Google Scholar 

  • Tominaga Y (2012) Visualization of city breathability based on CFD technique: case study for urban blocks in Niigata City. J Vis 15:269–276. doi:10.1007/s12650-012-0128-z

    Article  Google Scholar 

  • Uehara K, Murakami S, Oikawa S, Wakamatsu S (2000) Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons. Atmos Environ 34:1553–1562

    Article  Google Scholar 

  • Vardoulakis S, Fisher BEA, Pericleous K, Gonzalez-Flesca N (2003) Modelling air quality in street canyons: a review. Atmos Environ 37:155–182

    Article  Google Scholar 

  • Xie Z, Castro IP (2006) LES and RANS for turbulent flow over arrays of wall-mounted obstacles. Flow Turbul Combust 76:291–312. doi:10.1007/s10494-006-9018-6

    Article  Google Scholar 

  • Zaki SA, Hagishima A, Tanimoto J, Ikegaya N (2011) Aerodynamic parameters of urban building arrays with random geometries. Boundary-Layer Meteorol 138:99–120. doi:10.1007/s10546-010-9551-7

    Article  Google Scholar 

  • Zaki SA, Hagishima A, Tanimoto J (2012) Experimental study of wind-induced ventilation in urban building of cube arrays with various layouts. J Wind Eng Ind Aerodyn 103:31–40

    Article  Google Scholar 

  • Zaki SA, Hagishima A, Tanimoto J, Mohammad AF, Razak AA (2014) Estimation of aerodynamic parameters of urban building arrays using wind tunnel measurements. J Eng Sci Technol 9:176–190

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Malaysian Ministry of Higher Education (MOHE) under the Fundamental Research Grant Scheme (4 F350) project of Universiti Teknologi Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Zaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad, A.F., Zaki, S.A., Hagishima, A. et al. Determination of aerodynamic parameters of urban surfaces: methods and results revisited. Theor Appl Climatol 122, 635–649 (2015). https://doi.org/10.1007/s00704-014-1323-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1323-8

Keywords

Navigation