Skip to main content
Log in

Long-term snow and weather observations at Weissfluhjoch and its relation to other high-altitude observatories in the Alps

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Snow and weather observations at Weissfluhjoch were initiated in 1936, when a research team set a snow stake and started digging snow pits on a plateau located at 2,540 m asl above Davos, Switzerland. This was the beginning of what is now the longest series of daily snow depth, new snow height and bi-monthly snow water equivalent measurements from a high-altitude research station. Our investigations reveal that the snow depth at Weissfluhjoch with regard to the evolution and inter-annual variability represents a good proxy for the entire Swiss Alps. In order to set the snow and weather observations from Weissfluhjoch in a broader context, this paper also shows some comparisons with measurements from five other high-altitude observatories in the European Alps. The results show a surprisingly uniform warming of 0.8°C during the last three decades at the six investigated mountain stations. The long-term snow measurements reveal no change in mid-winter, but decreasing trends (especially since the 1980s) for the solid precipitation ratio, snow fall, snow water equivalent and snow depth during the melt season due to a strong temperature increase of 2.5°C in the spring and summer months of the last three decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bader H, Neher J, Niggli P (1939) Der Schnee und seine Metamorphose: Erste Ergebnisse und Anwendungen einer systematischen Untersuchung der alpinen Winterschneedecke; durchgefuehrt von der Station Weissfluhjoch-Davos der Schweiz. Schnee- u. Lawinenforschungskommission 1934–1938. Kuemmerly u. Frey

  • Baltensperger U, Schwikowski M, Gaggeler HW, Jost DT, Beer J, Siegenthaler U, Wagenbach D, Hofmann HJ, Synal HA (1993) Transfer of atmospheric constituents into an alpine snow field. Atmos Environ - Part A Gen Top 27 A(12):1881–1890

    Article  Google Scholar 

  • Bavay M, Lehning M, Jonas T, Löwe H (2009) Simulations of future snow cover and discharge in Alpine headwater catchments. Hydrol Processes 23(1):95–108. doi:10.1002/hyp.7195

    Article  Google Scholar 

  • Blanchet J, Marty C, Lehning M (2009) Extreme value statistics of snowfall in the Swiss Alpine region. Water Resour Res 45:12. doi:10.1029/2009wr007916

    Article  Google Scholar 

  • Bossolasco M (1954) Schneefall und Lufttemperatur. Experientia 10(9):365–366

    Article  Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. Journal of Geophysical Research-Atmospheres 111 (D12)

  • Brown R, Bartlett P, MacKay M, Verseghy D (2006) Evaluation of snow cover in CLASS for SnowMIP. Atmosphere-Ocean 44(3):223–238

    Article  Google Scholar 

  • Coen DR (2009) The storm lab: meteorology in the Austrian alps. Sci Context 22(3):463–486

    Article  Google Scholar 

  • De Quervain M (1951) Zur Verdunstung der Schneedecke. Theor Appl Climatol 3(1):47–64. doi:10.1007/bf02242590

    Google Scholar 

  • Egli L (2008) Spatial variability of new snow amounts derived from a dense network of Alpine automatic stations. Ann Glaciol 49:51–55

    Article  Google Scholar 

  • Egli L, Jonas T, Meister R (2009) Comparison of different automatic methods for estimating snow water equivalent. Cold Reg Sci Tech 57(2–3):107–115. doi:10.1016/j.coldregions.2009.02.008

    Article  Google Scholar 

  • Fierz C, Pluss C, Martin E (1997) Modelling the snow cover in a complex Alpine topography. Ann Glaciol 25:312–316

    Google Scholar 

  • Goodison BE, Louie PYT, Yang D (1998) WMO Solid Precipitation Measurement Intercomparison. Instruments and Observing Methods, vol 76. WMO, Geneva

  • Gruenewald T, Lehning M (2011) Altitudinal dependency of snow amounts in two small alpine catchments: can catchment-wide snow amounts be estimated via single snow or precipitation stations? Ann Glaciol 52(58):153–158

    Article  Google Scholar 

  • Gubler H, Hiller M (1984) The use of microwave FMCW radar in snow and avalanche research. Cold Reg Sci Tech 9(2):109–119

    Article  Google Scholar 

  • Hauer H (1950) Klima und Wetter der Zugspitze - 50 Jahre meteorologische Beobachtungen des Observatoriums Zugspitze, vol 16. Berichte des Deutschen Wetterdienstes in der US-Zone. Bad Kissingen

  • Huber A (1914) Das Klima der Zugspitze. Druck von E. Mühlthaler, München

    Google Scholar 

  • Huss M, Bauder A, Funk M, Hock R (2008) Determination of the seasonal mass balance of four Alpine glaciers since 1865. J Geophys Res 113(F1):F01015. doi:10.1029/2007jf000803

    Article  Google Scholar 

  • Huss M, Funk M, Ohmura A (2009) Strong Alpine glacier melt in the 1940s due to enhanced solar radiation. Geophys Res Lett 36(23):L23501. doi:10.1029/2009gl040789

    Article  Google Scholar 

  • IGOS (2007) Integrated Global Observing Strategy Cryosphere Theme Report—for the monitoring of our environment from space and from earth. WMO/TD-No. 1405. WMO, Geneva

  • Jonas T, Marty C, Magnusson J (2009) Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. J Hydrol 378:161–167

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London

    Google Scholar 

  • List R, de Quervain M (1953) Zur Struktur von Hagelkörnern. ZAMP Zeitschrift für angewandte Mathematik und Physik 4(6):492–496

    Article  Google Scholar 

  • Luetschg M, Stoeckli V, Lehning M, Haeberli W, Ammann W (2004) Temperatures in two boreholes at Flüela Pass, Eastern Swiss Alps: the effect of snow redistribution on permafrost distribution patterns in high mountain areas. Permafr Periglac Process 15(3):283–297. doi:10.1002/ppp.500

    Article  Google Scholar 

  • Mann HB (1945) Non parametric test against trend. Econometrica 13

  • Martinec J, Rango A (1981) Areal distribution of snow water equivalent evaluated by snow cover monitoring. Water Resour Res 17(5):1480–1488. doi:10.1029/WR017i005p01480

    Article  Google Scholar 

  • Marty C (2008) Regime shift of snow days in Switzerland. Geophys Res Lett 35. doi:10.1029/2008GL033998

  • Marty C, Blanchet J (2011) Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics. Climatic Change 1–17. doi:10.1007/s10584-011-0159-9

  • Marty C, Philipona R, Frohlich C, Ohmura A (2002) Altitude dependence of surface radiation fluxes and cloud forcing in the Alps: results from the Alpine Surface Radiation Budget network. Theor Appl Climatol 72(3–4):137–155

    Article  Google Scholar 

  • Meister R (1983) Ermittlung der Schneehöhenverteilung mit Hilfe der Photogrammetrie. Schnee und Lawinen im Winter 1981/1982, vol 46. SLF, Davos-Weissfluhjoch

  • Meister R (1986) Density of new snow and its dependence on air temperature and wind. In: GIETHZ (ed) Wokshop on the Correction of Precipitation Measurements, Zürich, 1985

  • Meister R (2009) Snow profiling at Weissfluhjoch. In: Schweizer J, (SLF) (ed) International snow science workshop, Davos, 2009

  • Pielmeier C, Schneebeli M, Stucki T (2001) Snow texture: a comparison of empirical versus simulated texture index for Alpine snow. Ann Glaciol 32:7–13

    Article  Google Scholar 

  • Pluess C, Ohmura A (1997) Longwave radiation on snow-covered mountainous surfaces. J Appl Meteorol 36(6):818–824. doi:10.1175/1520-0450-36.6.818

    Article  Google Scholar 

  • Rebetez M, Reinhard M (2008) Monthly air temperature trends in Switzerland 1901–2000 and 1975–2004. Theor Appl Climatol 91(1):27–34

    Article  Google Scholar 

  • Scherrer SC, Appenzeller C (2006) Swiss Alpine snow pack variability: major patterns and links to local climate and large-scale flow. Clim Res 32(3):187–199

    Article  Google Scholar 

  • Scherrer SC, Appenzeller C, Laternser M (2004) Trends in Swiss Alpine snow days: the role of local- and large-scale climate variability. Geophys Res Lett 31. doi:10.1029/2004GL020255

  • Schild M (1949) Schneehöhen: Der Einfluss der Meereshöhe. Schnee und Lawinen im Winter 1946/47, vol 11. Davos-Weissfluhjoch

  • Schmucki DA, Philipona R (2002) Ultraviolet radiation in the Alps: the altitude effect. Opt Eng 41(12):3090–3095. doi:10.1117/1.1516820

    Article  Google Scholar 

  • Schöner W, Auer I, Boehm R (2009) Long term trend of snow depth at Sonnblick (Austrian Alps) and its relation to climate change. Hydrol Processes 23(7):1052–1063

    Article  Google Scholar 

  • Seidel K, Brusch W, Steinmeier C Experiences from real time runoff forecasts by snow cover remote sensing. In: Geoscience and Remote Sensing Symposium, 1994. IGARSS’94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation., International, 8–12 Aug 1994 1994. pp 2090–2093 vol.2094

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Serquet G, Marty C, Dulex J-P, Rebetez M (2011) Seasonal trends and temperature dependence of the snowfall/precipitation-day ratio in Switzerland. Geophys Res Lett 38(7):L07703. doi:10.1029/2011gl046976

    Article  Google Scholar 

  • Stichler W, Rauert W, Martinec J (1981) Environmental isotope studies of an alpine snowpack (Weissfluhsoch Switzerland). Nord Hydrol 12(4–5):297–308

    Google Scholar 

  • Werner C, Wiesmann A, Strozzi T, Schneebeli M, Matzler C The snowscat ground-based polarimetric scatterometer: Calibration and initial measurements from Davos Switzerland. In: Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International, 25–30 July 2010 2010. pp 2363–2366

  • Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33(13)

  • Zhu XH, Ding GH, Levy W, Jakobi G, Offenthaler I, Moche W, Weiss P, Schramm KW (2011) QSPR study about sampling rates of semipermeable membrane devices for monitoring of organochlorine pesticides in Alps air. Chin Sci Bull 56(18):1884–1889

    Article  Google Scholar 

  • Zingg T (1954) Die Bestimmung der klimatischen Schneegrenze auf klimatologischer Grundlage. Mitteilungen des Eidg. Institutes für Schnee- und Lawinenforschung, vol 12

  • Zingg T (1963) Übersicht über die Schneeverhältnisse in der Schweiz. II. Teil: Neuschneeverhältnisse. Schnee und Lawinen im Winter 1961/62, vol 26. Davos-Weissfluhjoch

Download references

Acknowledgements

We are grateful that the National Weather Services of Austria (ZAMG), Germany (DWD), and Switzerland (MeteoSwiss) have maintained their long-term mountain observatories and thank them for providing the data and metadata for this analysis. We also thank Charles Fierz for sharing his knowledge about the measurements at Weissfluhjoch and Marcia Phillips for polishing the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Marty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marty, C., Meister, R. Long-term snow and weather observations at Weissfluhjoch and its relation to other high-altitude observatories in the Alps. Theor Appl Climatol 110, 573–583 (2012). https://doi.org/10.1007/s00704-012-0584-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0584-3

Keywords

Navigation