Skip to main content

Advertisement

Log in

Vertical profiles of carbon monoxide and ozone from MOZAIC aircraft over Delhi, India during 2003–2005

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

The Indo-Gangetic Plains is one of the most densely populated regions in the world and associated with large anthropogenic pollutants. Aircraft measurements of two such pollutants, ozone (O3) and carbon monoxide (CO) over Delhi, an urban location are analyzed to study monthly and seasonal variations. Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) vertical profile data during 2003–2005 are used in the present study. O3 over Delhi exhibits a lower tropospheric (surface to 850 mb) high value during post-monsoon (October and November) and winter (December–February) seasons, upper tropospheric (above 400 mb) enhancement during pre-monsoon and a zone of high values in the mid-troposphere (700–400 mb) during monsoon. The anthropogenic emissions show high CO concentrations below 800 mb during winter and pre-monsoon seasons in addition to transported CO in the upper atmosphere during pre-monsoon. During winter season, convective activities are suppressed as a result O3 and CO concentrations are higher near surface, while during summer season, surface air masses enhance levels of H2O, CO and other trace gases are lifted and subsequently mixed into the large scale circulation that enhance mixing ratios of many trace gases in the upper level anticyclones. MOZAIC observed vertical O3 profiles are compared with three chemistry-climate coupled models from the Coupled Model Inter-comparison Project Phase5 (CMIP5) with interactive O3 chemistry. All the models show good agreement with MOZAIC during pre-monsoon, with large biases during winter and monsoon seasons. Finally, monthly variations of MOZAIC observed CO show a good comparison with AIRS and MOPITT satellite data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles 15:955–966

    Article  Google Scholar 

  • Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, Part 1. J Atmos Sci 31:674–701

    Article  Google Scholar 

  • Austin J, Wilson RJ (2006) Ensemble simulations of the decline and recovery of stratospheric ozone. J Geophys Res 111:D16314. doi:10.1029/2005JD006907

    Article  Google Scholar 

  • Badarinath KVS, Kharol SK, Sharma AR (2009a) Long-range transport of aerosols from agriculture crop residue burning in Indo-Gangetic Plains e a study using LIDAR, ground measurements and satellite data. J Atmos Solar Terr Phys 71:112–120

    Article  Google Scholar 

  • Badarinath KVS, Kharol SK, Sharma AR, Krishna Prasad V (2009b) Analysis of aerosol and carbon monoxide characteristics over Arabian Sea during crop residue burning period in the Indo-Gangetic Plains using multi-satellite remote sensing datasets. J Atmos Solar Terr Phys 71:1267–1276

    Article  Google Scholar 

  • Basu BK (2007) Diurnal variation in precipitation over India during the summer monsoon season: observed and model prediction. Mon Weather Rev 135:2155–2167

    Article  Google Scholar 

  • Beig G, Ali K (2006) Behavior of boundary layer ozone and its precursors over a great alluvial plain of the world: indo-Gangetic Plains. Geophys Res Lett 33:L24813. doi:10.1029/2006GL028352

    Article  Google Scholar 

  • Beig G, Brasseur GP (2006) Influence of anthropogenic emissions on tropospheric ozone and its precursors over the Indian tropical region during a monsoon. Geophys Res Lett 33:L07808. doi:10.1029/2005GL024949

    Google Scholar 

  • Bey I et al (2001) Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. J Geophy Res 106:23073–23096

    Article  Google Scholar 

  • Chand TRK, Badrinath KVS, Murthy MSR, Rajashekhar G, Elvidge CD, Tuttle BT (2007) Active forest fires monitoring in Uttaranchal State, India using multi-temporal DMSP-OLS and MODIS data. Int J Remote Sens 28:2123–2132

    Article  Google Scholar 

  • Chandra S, Ziemke JR, Tie X, Brasseur G (2004) Elevated ozone in the troposphere over the Atlantic and Pacific Oceans in the northern hemisphere. Geophys Res Lett 31:L23102. doi:10.1029/2004GL020821

    Google Scholar 

  • Clerbaux PF et al (2009) Monitoring of atmospheric composition using the thermal infrared IASI/METOp sounder. Atmos Chem Phys 9:6041–6054

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quat J Royal Meteo Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Deeter MN, Edwards DP, Gille JC, Drummond JR (2007) Sensitivity of MOPITT observations to carbon monoxide in the lower troposphere. J Geophys Res 112:D24306. doi:10.1029/2007JD008929

    Article  Google Scholar 

  • Deeter MN et al (2010) The MOPITT version 4 CO product: algorithm enhancements, validation, and long-term stability. J Geophys Res 115:D07306. doi:10.1029/2009JD013005

    Article  Google Scholar 

  • Donner LJ (1993) A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J Atmos Sci 50:889–906

    Article  Google Scholar 

  • Donner LJ et al (2011) The dynamical core, physical parameterizations and basic simulation characteristic of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24:3484–3519

    Article  Google Scholar 

  • Duncan BN, Logan JA, Bey I, Megretskaia IA, Yantosca RM, Novelli PC, Jones NB, Rinsland CP (2007) Global budget of CO, 1988–1997: source estimates and validation with a global model. J Geophys Res 112:D22301. doi:10.1029/2007JD008459

    Article  Google Scholar 

  • Ebi KL, McGregor G (2008) Climate change, tropospheric ozone and particulate matter and health impacts. Environ Health Perspect 116(11):1449–1455

    Article  Google Scholar 

  • Erying V et al (2013) Long-term ozone changes and associated climate impacts in CMIP5 simulations. J Geophy Res 118:5029–5060. doi:10.1002/jgrd.50316

    Google Scholar 

  • Fadnavis S, Chakraborty T, Beig G (2010) Seasonal stratospheric intrusion of ozone in the upper troposphere over India. Ann Geophys 28:2149–2159

    Article  Google Scholar 

  • Fadnavis S, Buchunde P, Ghude SD, Kulkarni SH, Beig G (2011) Evidence of seasonal enhancement of CO in the upper troposphere over India. Int J Remote Sens 32(22):7441–7452

    Article  Google Scholar 

  • Follows MJ, Austin JF (1992) A zonal average model of the stratospheric contribution to the tropospheric ozone budget. J Geophy Res 97:18047–18060

    Article  Google Scholar 

  • Gadgil S (2003) The Indian monsoon and its variability. Annu Rev Earth Planet Sci 31:429–467

    Article  Google Scholar 

  • Gautam R, Hsu NC, Kafatos M, Tsay S-C (2007) Influences of winter haze on fog/low cloud over the Indo-Gangetic plains. J Geophys Res 112:D05207. doi:10.1029/2005JD007036

    Article  Google Scholar 

  • Gautam R, Hsu NC, Lau KM (2010) Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: implications for regional climate warming. J Geophys Res 115:D17208. doi:10.1029/2010JD013819

    Article  Google Scholar 

  • Gautam R, Hsu NC, Eck TF, Holben BN et al (2013) Characterization of aerosols over the Indochina peninsula from satellite-surface observations during biomass burning pre-monsoon season. Atmos Environ 78:51–59

    Article  Google Scholar 

  • Gent PR et al (2011) The Community Climate System Model Version 4. J Clim 24:4973–4991

    Article  Google Scholar 

  • Ghosh D, Lal S, Sarkar U (2013) High nocturnal ozone levels at a surface site in Kolkata, India: trade-odd between meteorology and specific nocturnal chemistry. Urban Clim 5:82–103

    Article  Google Scholar 

  • Ghude SD, Jain SL, Arya BC, Kulkarni PS et al (2006) Temporal and spatial variability of surface ozone at Delhi and Antarctica. Int J Climatol 26:2054–2062

    Article  Google Scholar 

  • Ghude SD, Jain SL, Arya BC, Beig G et al (2008) Ozone in ambient air at a tropical megacity, Delhi: characteristics, trends and cumulative ozone exposure indices. J Atmos Chem 60(3):237–252

    Article  Google Scholar 

  • Ghude SD, Beig G, Kulkarni PS, Kanawade VP, Fadnavis S, Remedios JJ, Kulkarni SH (2011) Regional CO pollution over the Indian-subcontinent and various transport pathways as observed by MOPITT. Int J Remote Sens 32:6133–6148

    Article  Google Scholar 

  • Ghude SD, Pfister GG, Jena C et al (2012) Satellite constraints of nitrogen oxide (NO x ) emissions from India based on OMI observations and WRF-Chem simulations. Geophys Res Lett 40:423–428. doi:10.1029/2012GL053926

    Article  Google Scholar 

  • Giles DM, Holben BN, Eck TF et al (2012) An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J Geophys Res 117:D17203. doi:10.1029/2012JD018127

    Article  Google Scholar 

  • Hack JJ (1994) Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2). J Geophys Res 99:5551–5568

    Article  Google Scholar 

  • Helten M et al (1998) Calibration and performance of automatic compact instrumentation for the measurement of relative humidity from passenger aircraft. J Geophys Res 13:25643–25652

    Article  Google Scholar 

  • Holton JR et al (1995) Stratosphere-troposphere exchange. Rev Geophys 33(403–439):1995

    Google Scholar 

  • Horowitz LW et al (2003) A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, version 2. J Geophy Res 108:4784. doi:10.1029/2002JD002853

    Google Scholar 

  • Hoskins BJ et al (1985) On the use and significance of isentropic potential vorticity maps. Q J R Meteorol Soc 111:877–946

    Article  Google Scholar 

  • IPCC AR4 WG1(2007) Climate change 2007: the physical scientific basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tingor M and Miller HL (eds) contribution of working group I to the fourth assessment report of the intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge

  • Jaffe DA et al (1997) Impact of Asian emissions on the remote North Pacific atmosphere: Interpretation of CO data from Shemya Midway, and Mauna Loa. J Geophys Res, Guam

    Google Scholar 

  • Jain SL et al (2005) Observational study of surface ozone at New Delhi, India. Int J Remote Sens 26:3515–3526

    Article  Google Scholar 

  • Jethva HS et al (2005) Seasonal variability of aerosols over the Indo-Gangetic basin. J Geophys Res 110:D21204. doi:10.1029/2005JD005938

    Article  Google Scholar 

  • Kanamitsu M et al (2002) NCEP-DOE AMIP-II Reanalysis (R-2). Bull Amer Meteor Soc 83:1631–1643

    Article  Google Scholar 

  • Kar J et al (2004) Evidence of vertical transport of carbon monoxide from Measurements of Pollution in the Troposphere (MOPITT). Geophy Res Lett 31:L23105. doi:10.1029/2004GL021128

    Google Scholar 

  • Kar J et al (2008) Measurement of low-altitude CO over the Indian subcontinent by MOPITT. J Geophys Res 113:D16307. doi:10.1029/2007JD009362

    Article  Google Scholar 

  • Kar J et al (2010) Wintertime pollution over the Eastern Indo-Gangetic Plains as observed from MOPITT, CALIPSO and tropospheric ozone residual data. Atmos Chem Phys 10:12273–12283. doi:10.5194/acp-10-12273-2010

    Article  Google Scholar 

  • Karnosky DF et al (2007) Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environ Pollut 147:489–506

    Article  Google Scholar 

  • Kaskaoutis DG, Kumar S, Sharma D, Singh RP, Kharol SK, Sharma M, Singh AK, Singh S, Singh A, Singh D (2014a) Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India. J Geophys Res Atmos 119:5424–5444. doi:10.1002/2013JD021357

    Article  Google Scholar 

  • Kaskaoutis DG et al (2014b) Synoptic weather conditions and aerosol episodes over Indo-Gangetic Plains, India. Clim Dyn. doi:10.1007/s00382-014-2055-2

    Google Scholar 

  • Kharol SK, Badarinath KVS (2006) Impact of biomass burning on aerosol properties over tropical urban region of Hyderabad, India. Geophys Res Lett 33:L20801. doi:10.1029/2006GL026759

    Article  Google Scholar 

  • Kharol SK et al (2012) Black carbon aerosol variations over Patiala city, Punjab, India—a study during agriculture crop residue burning period using ground measurements and satellite data. J Atmos Solar Terr Phys 84–85:45–51

    Article  Google Scholar 

  • Kiley CM et al (2003) An intercomparison and evaluation of aircraft-derived and simulated CO from seven chemical transport models during the TRACE-P experiment. J Geophys Res 108:8819. doi:10.1029/2002JD003089,D21

    Article  Google Scholar 

  • Kim PS et al (2013) Global ozone-CO correlations from OMI and AIRS : constraints on tropospheric ozone sources. Atmos Phys Chem 13:9321–9335

    Article  Google Scholar 

  • Kulkarni PS et al (2009) On some aspects of tropospheric ozone variability over the Indo-Gangetic (IG) basin, India. Int J Remote Sens 30(15–16):4111–4122

    Article  Google Scholar 

  • Kumar S et al (2009) Annual Variability of water vapor from GPS and MODIS data over the Indo-Gangetic Plains. J Ind Geophys Union 13(1):17–23

    Google Scholar 

  • Kumar S et al (2013) Variability of GPS derived water vapor and comparison with MODIS data over the Indo-Gangetic plains. Phys Chem Earth 55–57:11–18. doi:10.1016/j.pce.2010.03.040

    Article  Google Scholar 

  • Kunhikrishnan T et al (2006) Regional NOx emission strength for the Indian subcontinent and the impact of emissions from India and neighboring countries on regional O3 chemistry. J Geophys Res 111:D15301. doi:10.1029/2005JD006036

    Article  Google Scholar 

  • Lal S, Sahu LK, Gupta S, Srivastava KS, Modh S, Venkataramani S, Rajesh TA (2008) Emission characteristics of ozone related trace gases at a semi-urban site in the Indo-Gangetic plain using inter-correlations. J Atmos Chem 60(3):189–204. doi:10.1007/s10874-008-9115-0

    Article  Google Scholar 

  • Lal S, Sahu LK, Venkataramani S, Mallik C (2012) Light non-methane hydrocarbons at two sites in the Indo-Gangetic plain. J Environ Monit 14(4):1159–1166. doi:10.1039/C3EM10682E

    Article  Google Scholar 

  • Lamarque J-F et al (2010) Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Phys Chem 10:7017–7039

    Article  Google Scholar 

  • Marenco A et al (1998) Measurement of ozone and water vapor by Airbus in-service aircraft: the MOZAIC airborne program, an overview. J Geophys Res 103(D19):25631–25642. doi:10.1029/98JD00977

    Article  Google Scholar 

  • McMillan WW et al (2005) Daily global maps of carbon monoxide from NASA’s atmospheric infrared sounder. Geophys Res Lett 32:L11801. doi:10.1029/2004GL021821

    Article  Google Scholar 

  • McMillan WW et al (2011) Validating the AIRS Version 5 CO Retrieval with DACOM in situ Measurements During INTEX-A and –B. IEEE Trans Geosci Remote Sens 99:1–12

    Google Scholar 

  • Mellor GL, Yamada TY (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875. doi:10.1029/RG020i004p00851

    Article  Google Scholar 

  • Neale RB (2008) The impact of convection on ENSO: from a delayed oscillator to a series of events. J Clim 21:5904–5924

    Article  Google Scholar 

  • Nedelec P et al (2003) An improved infrared carbon monoxide analyser for routine measurements aboard commercial Airbus aircraft: technical validation and first scientific results of the MOZAIC III programme. Atmos Chem Phys 3:1551–1564. doi:10.5194/acp-3-1551-2003

    Article  Google Scholar 

  • Novelli PC et al (1998) Distributions and recent changes of carbon monoxide in the lower troposphere. J Geophys Res 103:19015–19033. doi:10.1029/98JD01366

    Article  Google Scholar 

  • Ojha N et al (2012) Variability in ozone at a semi-urban site in the Indo-Gangetic Plain region: association with the meteorology and regional processes. J Geophys Res 117:D20301. doi:10.1029/2012JD017716

    Article  Google Scholar 

  • Olivier JGJ et al (2006) Description of EDGAR Version 2.0: A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 1 × 1 grid, RIVM Rep. 771060 002, TNO-MEP Rep. R96/119, Natl Inst of Public Health and the Environ. Bilthoven

  • Patil SD et al (2009) On the variation of the tropospheric ozone over Indian region in relation to the meteorological parameters. Int J Remote Sens 30(11):2813–2826

    Article  Google Scholar 

  • Pochanart P, Akimoto H, Kajii Y, Sukasem P (2003) Carbon monoxide, regional-scale transport, and biomass burning in tropical continental Southeast Asia: observations in rural Thailand. J Geophys Res 108:4552. doi:10.1029/2002JD003360

    Article  Google Scholar 

  • Prasad AK et al (2006a) Seasonal climatology of aerosol optical depth over the Indian subcontinent: trend and departures in recent years. Int J Remote Sens 37(12):2323–2329

    Article  Google Scholar 

  • Prasad AK, Singh RP, Kafatos M (2006b) Influence of coal based thermal power plants on aerosol optical properties in the Indo-Gangetic basin. Geophys Res Lett. 33:L05805. doi:10.1029/2005GL023801

  • Prasad AK et al (2007) GPS and meteorology for understanding monsoon dynamics over the Indian sub-continent. IAHS Publ 313:33–39

    Google Scholar 

  • Prasad AK, Singh RP, Kafatos M (2009) Validation of MODIS data, AIRS, NCEP/DOE AMIP-II Reanalysis-2 and AERONET Sun photometer derived integrated precipitable water vapor using ground-based GPS receivers over India. J Geophy Res 114:D05107. doi:10.1029/2008JD011230

    Google Scholar 

  • Randel WJ, Park M (2006) Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J Geophys Res 111:D12314. doi:10.1029/2005JD006490

    Article  Google Scholar 

  • Randel WJ et al (2010) Asian monsoon transport of pollution to the stratosphere. Science 328:611–613

    Article  Google Scholar 

  • Roy S et al (2008) Seasonal distribution of ozone and its precursors over the tropical Indian region using regional chemistry-transport model. J Geophys Res 113:D21307. doi:10.1029/2007JD009712

    Article  Google Scholar 

  • Sahu LK et al (2010) Seasonality of tropospheric ozone and water vapor over Delhi, India: a study based on MOZAIC measurement data. J Atmos Chem 62:151–174

    Article  Google Scholar 

  • Sahu LK, Lal S, Thouret V, Smit HG (2011) Climatology of tropospheric ozone and water vapor over Chennai, A Study based on MOZAIC measurements over India. Int J Climatol 31(6):920–936. doi:10.1002/joc.2128

    Article  Google Scholar 

  • Sahu LK, Sheel V, Kajino M, Deushi M, Gunthe SS, Sinha PR, Sauvage B, Thouret V, Smit HG (2014) Seasonal and interannual variability of tropospheric ozone over an urban site in India: a study based on MOZAIC and CCM vertical profiles over Hyderabad. J Geophys Res Atmos 119:3615–3641. doi:10.1002/2013JD021215

    Article  Google Scholar 

  • Schoeberl MR et al (2007) A trajectory-based estimate of the tropospheric ozone column using the residual method. J Geophys Res 112:D24S49. doi:10.1029/2007JD008773

    Article  Google Scholar 

  • Schuck TJ et al (2010) Greenhouse gas relationships in the Indian summer monsoon plume measured by the CARIBIC passenger aircraft. Atmos Chem Phys 10:3965–3984

    Article  Google Scholar 

  • Shaiganfar R et al (2011) Estimation of NOx emissions from Delhi using Car MAX-DOAS observations and comparison with OMI satellite data. Atmos Chem Phys 11:10871–10887

    Article  Google Scholar 

  • Sharma AR et al (2010) Impact of agriculture crop residue burning on atmospheric aerosol loading—a study over Punjab State, India. Ann Geophys 28:367–379

    Article  Google Scholar 

  • Singh RP et al (2004) Retrieval of water vapor using SSM/I and its relation with the onset of monsoon. Ann Geophys 22:3079–3083

    Article  Google Scholar 

  • Staudt AC et al (2001) Continental sources, transoceanic transport, and inter-hemispheric exchange of carbon monoxide over the Pacific. J Geophys Res 106(D23):32571–32589. doi:10.1029/2001JD900078

    Article  Google Scholar 

  • Sudo K, Takahashi M, Kurokawa J, Akimoto H (2002) Chaser: A global chemical model of the troposphere—1. Model description. J Geophys Res Atmos 107(D17):4339. doi:10.1029/2001JD001113,2002

  • Susskind J et al (2003) Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans Geosci Remote Sens 41:390–409

    Article  Google Scholar 

  • Takemura T et al (2009) A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum. Atmos Chem Phys 9:3061–3073. doi:10.5194/acp-9-3061-2009

    Article  Google Scholar 

  • Tan Q et al (2004) An evaluation of TRACE-P emission inventories from China using a regional model and chemical measurements. J Geophys Res 109:D22305. doi:10.1029/2004JD005071

    Article  Google Scholar 

  • Taylor KE et al (2012) An overview of CMIP5 and the experimental design. B Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Thouret V et al (1998) Comparisons of ozone measurements from the MOZAIC airborne program and the ozone sounding network at eight locations. J Geophys Res 103(D19):25695–25720. doi:10.1029/98JD02243

    Article  Google Scholar 

  • Vadrevu KP (2012) Vegetation fires in the Himalayan region—aerosol load, black carbon emissions and smoke plume heights. Atmos Environ 47:241–251

    Article  Google Scholar 

  • Vadrevu KP et al (2011) MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India. Environ Poll 159:1560–1569

    Article  Google Scholar 

  • Vadrevu KP et al (2013) Satellite based analysis of fire-carbon monoxide relationships from forest and agricultural residue burning (2003–2011). Atmos Environ 64:179–191

    Article  Google Scholar 

  • Wang T et al (2002) Emission characteristics of CO, NOx, SO2 and indications of biomass burning observed at a rural site in eastern China. J Geophys Res 107(D12):4157. doi:10.1029/2001JD000724

    Article  Google Scholar 

  • Wang T et al (2006) On the origin of surface ozone and reactive nitrogen observed at a remote mountain site in the northeastern Qinhai-Tibetan Plateau, western China. J Geophys Res 111:D08303. doi:10.1029/2005JD006527

    Google Scholar 

  • Watanabe S et al (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3 m experiments. Geosci Model Dev 4:845–872

    Article  Google Scholar 

  • Worden J et al (2009) Observed vertical distribution of tropospheric ozone during the Asian summer time monsoon. J Geophys Res 114:D13304. doi:10.1029/2008JD010560

    Article  Google Scholar 

  • Zbinden RM et al (2006) Mid-latitude tropospheric ozone columns from the MOZAIC program: climatology and interannual variability. Atmos Chem Phys 6:1053–1073. doi:10.5194/acp-6-1053-2006

    Article  Google Scholar 

  • Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate center general circulation model. Atmos Ocean 33:407–446

    Article  Google Scholar 

  • Zhao M et al (2009) Simulations of global hurricane climatology, interannaul variability and response to global warming using a 50 km resolution GCM. J Climate 22(24):6653–6678. doi:10.1175/2009JCLI3049

    Article  Google Scholar 

  • Ziemke JR et al (2006) Tropospheric ozone determined from Aura OMI and MLS: evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model. J Geophys Res 111:D19303. doi:10.1029/2006JD007089

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge MOZAIC/IAGOS program to carry out their data collection since 1994 and free availability of data. We acknowledge AIRS and MOPITT science teams for the satellite products used in this study. NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD Boulder, Colorado, USA. Era-Interim data provided by ECMWF reanalysis project. We acknowledge the World Climate Research Program Working Group on Coupled Modelling, which is responsible for CMIP and we thank the climate modeling groups for producing and making available their model output. We are grateful to the Editor and anonymous reviewer for their comments/suggestions, which have helped us to improve earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh P. Singh.

Additional information

Responsible Editor: S. Trini Castelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, P.S., Singh, R.P. & Nédélec, P. Vertical profiles of carbon monoxide and ozone from MOZAIC aircraft over Delhi, India during 2003–2005. Meteorol Atmos Phys 127, 229–240 (2015). https://doi.org/10.1007/s00703-014-0349-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-014-0349-x

Keywords

Navigation