Skip to main content

Advertisement

Log in

Donepezil loaded PLGA-b-PEG nanoparticles: their ability to induce destabilization of amyloid fibrils and to cross blood brain barrier in vitro

  • Translational Neurosciences - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease. Cholinesterase inhibitors (ChEIs) are commonly used for symptomatic treatment of neural transmission improvement in AD. Donepezil is a reversible and non-competitive ChEI which is clinically used for palliative treatment of AD. The aim of the present study was to investigate the destabilizing effect of donepezil loaded poly(lactic-co-glycolic acid)-block-poly (ethylene glycol) [PLGA-b-PEG] nanoparticles on fibril formation in vitro and the ability of these nanoparticles to cross blood brain barrier (BBB) using in vitro BBB model and the neuroprotective effects of free donepezil and donepezil loaded PLGA-b-PEG nanoparticles. Donepezil loaded PLGA-b-PEG nanoparticles were prepared with double emulsion method. Destabilizing effect of these donepezil loaded particles on the amyloid-beta fibril (Aβ1–40 and Aβ1–42) formation was determined in vitro. Nanoparticles were found to have small particle size and have destabilizing effect on fibril formation. In vitro BBB model was successfully prepared. Nanoparticles showed the ability to cross the BBB and showed a controlled release profile in this system. IL-1β, IL-6, GM-CSF, TGF-β, MCP-1 and TNF-α levels were found to be increased in both gene and protein expression levels in astrocytes incubated with amyloid fibrils in in vitro BBB model suggesting an increased inflammation. Free donepezil and donepezil loaded nanoparticle administration caused a significant dose-dependent decrease in both gene and protein expression levels of IL-1β, IL-6, GM-CSF and TNF-α. No significant changes were observed for TGF-β and MCP-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Badilescu S, Packirisamy M (2012) Microfluidics-nano-integration for synthesis and sensing. Polymers 4(2):1278

    Article  Google Scholar 

  • Bala I, Hariharan S, Kumar MN (2004) PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst 21(5):387–422

    Article  CAS  PubMed  Google Scholar 

  • Barratt G (2003) Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci: CMLS 60(1):21–37

    Article  CAS  PubMed  Google Scholar 

  • Baysal I, Yabanoglu-Ciftci S, Tunc-Sarisozen Y, Ulubayram K, Ucar G (2013) Interaction of selegiline-loaded PLGA-b-PEG nanoparticles with beta-amyloid fibrils. J Neural Transm (Vienna, Austria: 1996) 120(6):903–910. doi:10.1007/s00702-013-0992-2

    Article  CAS  Google Scholar 

  • Brambilla D, Verpillot R, Le Droumaguet B, Nicolas J, Taverna M, Kóňa J, Lettiero B, Hashemi SH, De Kimpe L, Canovi M, Gobbi M, Nicolas V, Scheper W, Moghimi SM, Tvaroška I, Couvreur P, Andrieux K (2012) PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: toward engineering of functional nanomedicines for Alzheimer’s disease. ACS Nano 6(7):5897–5908. doi:10.1021/nn300489k

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, Wong PC (2001) BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat Neurosci 4(3):233–234. doi:10.1038/85064

    Article  CAS  PubMed  Google Scholar 

  • Calvo P, Gouritin B, Chacun H, Desmaele D, D’Angelo J, Noel JP, Georgin D, Fattal E, Andreux JP, Couvreur P (2001) Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res 18(8):1157–1166

    Article  CAS  PubMed  Google Scholar 

  • Checler F, Vincent B (2002) Alzheimer’s and prion diseases: distinct pathologies, common proteolytic denominators. Trends Neurosci 25(12):616–620

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC (2007) Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28(5):869–876. doi:10.1016/j.biomaterials.2006.09.047

    Article  CAS  PubMed  Google Scholar 

  • Christodoulou C, Melville P, Scherl WF, Macallister WS, Elkins LE, Krupp LB (2006) Effects of donepezil on memory and cognition in multiple sclerosis. J Neurol Sci 245(1–2):127–136. doi:10.1016/j.jns.2005.08.021

    Article  CAS  PubMed  Google Scholar 

  • Deli M, Ábrahám C, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25(1):59–127. doi:10.1007/s10571-004-1377-8

    Article  PubMed  Google Scholar 

  • Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36(2):180–190

    Article  CAS  PubMed  Google Scholar 

  • Duncan R (2011) Polymer therapeutics as nanomedicines: new perspectives. Curr Opin Biotechnol 22(4):492–501. doi:10.1016/j.copbio.2011.05.507

    Article  CAS  PubMed  Google Scholar 

  • Etienne P, Robitaille Y, Wood P, Gauthier S, Nair NP, Quirion R (1986) Nucleus basalis neuronal loss, neuritic plaques and choline acetyltransferase activity in advanced Alzheimer’s disease. Neuroscience 19(4):1279–1291

    Article  CAS  PubMed  Google Scholar 

  • Giulian D, Baker TJ (1985) Peptides released by ameboid microglia regulate astroglial proliferation. J Cell Biol 101(6):2411–2415

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa K, Yamaguchi I, Omata S, Gejyo F, Naiki H (1999) Interaction between A beta(1–42) and A beta(1–40) in Alzheimer’s beta-amyloid fibril formation in vitro. Biochemistry 38(47):15514–15521

    Article  CAS  PubMed  Google Scholar 

  • Helzner EP, Scarmeas N, Cosentino S, Tang MX, Schupf N, Stern Y (2008) Survival in Alzheimer disease: a multiethnic, population-based study of incident cases. Neurology 71(19):1489–1495. doi:10.1212/01.wnl.0000334278.11022.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heneka MT, O’Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184(1–2):69–91. doi:10.1016/j.jneuroim.2006.11.017

    Article  CAS  PubMed  Google Scholar 

  • Herrmann N, Chau SA, Kircanski I, Lanctot KL (2011) Current and emerging drug treatment options for Alzheimer’s disease: a systematic review. Drugs 71(15):2031–2065. doi:10.2165/11595870-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  • Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150(5):552–558. doi:10.1038/sj.bjp.0707130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merisko-Liversidge E, Liversidge GG, Cooper ER (2003) Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 18(2):113–120

    Article  CAS  PubMed  Google Scholar 

  • Murray CA, Lynch MA (1998) Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation. J Neurosci 18(8):2974–2981

    CAS  PubMed  Google Scholar 

  • Naik P, Cucullo L (2012) In vitro blood-brain barrier models: current and perspective technologies. J Pharm Sci 101(4):1337–1354. doi:10.1002/jps.23022

    Article  CAS  PubMed  Google Scholar 

  • Olivier JC, Huertas R, Lee HJ, Calon F, Pardridge WM (2002) Synthesis of pegylated immunonanoparticles. Pharm Res 19(8):1137–1143

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Hasegawa K, Yoshiike Y, Takashima A, Yamada M, Naiki H (2002) Nordihydroguaiaretic acid potently breaks down pre-formed Alzheimer’s beta-amyloid fibrils in vitro. J Neurochem 81(3):434–440

    Article  CAS  PubMed  Google Scholar 

  • Pappa H, Farru R, Vilanova PO, Palacios M, Pizzorno MT (2002) A new HPLC method to determine Donepezil hydrochloride in tablets. J Pharm Biomed Anal 27(1–2):177–182

    Article  CAS  PubMed  Google Scholar 

  • Robinson M, Lee BY, Leonenko Z (2015) Drugs and drug delivery systems targeting amyloid-β in Alzheimer’s disease. AIMS Mol Sci 2(3):332–358. doi:10.3934/molsci.2015.3.332

    Article  CAS  Google Scholar 

  • Rogers SL, Friedhoff LT (1998) Long-term efficacy and safety of donepezil in the treatment of Alzheimer’s disease: an interim analysis of the results of a US multicentre open label extension study. Eur Neuropsychopharmacol 8(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Roney C, Kulkarni P, Arora V, Antich P, Bonte F, Wu A, Mallikarjuana NN, Manohar S, Liang HF, Kulkarni AR, Sung HW, Sairam M, Aminabhavi TM (2005) Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer’s disease. J Controll Release 108(2–3):193–214. doi:10.1016/j.jconrel.2005.07.024

    Article  CAS  Google Scholar 

  • Sari E, Sarisozen YT, Mutlu H, Shahbazi R, Ucar G, Ulubayram K (2015) ICAM-1 targeted catalase encapsulated PLGA-b-PEG nanoparticles against vascular oxidative stress. J Microencapsul. doi:10.3109/02652048.2015.1073384

    PubMed  Google Scholar 

  • Selkoe DJ (2000) The origins of Alzheimer disease: a is for amyloid. JAMA 283(12):1615–1617

    Article  CAS  PubMed  Google Scholar 

  • Spillantini MG, Goedert M (1998) Tau protein pathology in neurodegenerative diseases. Trends Neurosci 21(10):428–433

    Article  CAS  PubMed  Google Scholar 

  • Tancredi V, D’Arcangelo G, Grassi F, Tarroni P, Palmieri G, Santoni A, Eusebi F (1992) Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neurosci Lett 146(2):176–178

    Article  CAS  PubMed  Google Scholar 

  • Tomiyama T, Asano S, Suwa Y, Morita T, Kataoka K, Mori H, Endo N (1994) Rifampicin prevents the aggregation and neurotoxicity of amyloid beta protein in vitro. Biochem Biophys Res Commun 204(1):76–83. doi:10.1006/bbrc.1994.2428

    Article  CAS  PubMed  Google Scholar 

  • Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science (New York, NY) 291(5504):657–661. doi:10.1126/science.291.5504.657

    Article  CAS  Google Scholar 

  • White JA, Manelli AM, Holmberg KH, Van Eldik LJ, Ladu MJ (2005) Differential effects of oligomeric and fibrillar amyloid-beta 1–42 on astrocyte-mediated inflammation. Neurobiol Dis 18(3):459–465. doi:10.1016/j.nbd.2004.12.013

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm I, Fazakas C, Krizbai IA (2011) In vitro models of the blood-brain barrier. Acta Neurobiol Exp 71(1):113–128

    Google Scholar 

  • Xie J, Brayne C, Matthews FE (2008) Survival times in people with dementia: analysis from population based cohort study with 14 year follow-up. BMJ (Clinical research ed) 336(7638):258–262. doi:10.1136/bmj.39433.616678.25

    Article  Google Scholar 

  • Yoshiyama Y, Kojima A, Ishikawa C, Arai K (2010) Anti-inflammatory action of donepezil ameliorates tau pathology, synaptic loss, and neurodegeneration in a tauopathy mouse model. J Alzheimer’s Dis: JAD 22(1):295–306. doi:10.3233/jad-2010-100681

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is financially supported by The Scientific and Technological Research Council of Turkey (TUBITAK) (Grant No. 112T490).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samiye Yabanoglu-Ciftci.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baysal, I., Ucar, G., Gultekinoglu, M. et al. Donepezil loaded PLGA-b-PEG nanoparticles: their ability to induce destabilization of amyloid fibrils and to cross blood brain barrier in vitro. J Neural Transm 124, 33–45 (2017). https://doi.org/10.1007/s00702-016-1527-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-016-1527-4

Keywords

Navigation