Skip to main content
Log in

CSF Nrf2 and HSPA8 in Parkinson’s disease patients with and without LRRK2 gene mutations

  • Translational Neurosciences - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Leucine-rich repeat kinase 2 (LRRK2) gene mutations are the most common genetic cause of Parkinson’s disease (PD). CSF specimens from LRRK2 + PD patients and healthy LRRK2 mutation carriers are, therefore, useful for biomarker studies. This study examined the hypothesis that differences are present between subjects with sporadic PD (sPD), PD carriers of LRRK2 mutations (LRRK2 + PD), healthy control subjects lacking LRRK2 mutations (CTL), and LRRK2 mutation-carrying healthy controls (LRRK2 + CTL) for CSF concentrations of six potential PD biomarkers. Two of these proteins, nuclear factor (erythroid-derived 2)-like 2 (“Nrf2”) and heat shock 70 kDa protein 8 (“HSPA8”), were detected in preliminary ELISAs, then measured in a larger cohort (60 sPD, 10 LRRK2 + PD, 23 CTL, 31 LRRK2 + CTL). No statistically significant differences were found between the groups (Nrf2 p = 0.13, HSPA8 p = 0.21). Nrf2 concentrations in LRRK2 + PD subjects were strongly positively associated with Unified Parkinson’s Disease Rating Scale (UPDRS) total and motor scores [Spearman rho = 0.77 (p = 0.012) and 0.83 (p = 0.005)] and negatively associated with Montreal Cognitive Assessment (MoCA) scores (rho = −0.57; p = 0.11). Partial correlation coefficient calculations indicated that disease duration contributed to the associations of Nrf2 levels with UPDRS scores and with MoCA scores in this group. While CSF Nrf2 and HSPA8 do not appear to offer diagnostic biomarkers for PD, the associations between Nrf2 levels and UPDRS scores in LRRK2 + PD patients merit further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aasly JO, Vilarino-Guell C, Dächsel JC, Webber PJ, West AB, Haugarvoll K et al (2010) Novel pathogenic LRRK2 p.Asn1437His substitution in familial Parkinson’s disease. Mov Disord 25:2156–2163

    Article  PubMed Central  PubMed  Google Scholar 

  • Aasly JO, Shi M, Sossi V, Stewart T, Johansen KK, Wszolek ZK et al (2012) Cerebrospinal fluid amyloid β and tau in LRRK2 mutation carriers. Neurology 78:55–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aasly JO, Johansen KK, Brønstad G, Warø BJ, Majbour NK, Varghese S et al (2014) Elevated levels of cerebrospinal fluid α-synuclein oligomers in healthy asymptomatic LRRK2 mutation carriers. Front Aging Neurosci 6:248

    Article  PubMed Central  PubMed  Google Scholar 

  • Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA et al (2010) Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol 67:1464–1472

    PubMed  Google Scholar 

  • Bayir H, Kagan VE, Tyurina YY, Tyurin V, Ruppel RA, Adelson PD et al (2002) Assessment of antioxidant reserves and oxidative stress in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatr Res 51:571–578

    Article  PubMed  Google Scholar 

  • Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 9:91

    PubMed Central  PubMed  Google Scholar 

  • Dang J, Brandenburg LO, Rosen C, Fragoulis A, Kipp M, Pufe T et al (2012) Nrf2 expression by neurons, astroglia, and microglia in the cerebral cortical penumbra of ischemic rats. J Mol Neurosci 46:578–584

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo B, Ek CJ, Sandberg M, Mallard C (2013) Expression of the Nrf2-system at the blood-CSF barrier is modulated by neonatal inflammation and hypoxia-ischemia. J Inherit Metab Dis 36:479–490

    Article  PubMed Central  PubMed  Google Scholar 

  • Dice JF (2007) Chaperone-mediated autophagy. Autophagy 3:295–299

    Article  CAS  PubMed  Google Scholar 

  • Di Fonzo A, Rohé CF, Ferreira J, Chien HF, Vacca L, Stocchi F et al (2005) A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson’s disease. Lancet 365:412–415

    Article  PubMed  Google Scholar 

  • Djaldetti R, Lev N, Melamed E (2009) Lesions outside the CNS in Parkinson’s disease. Mov Disord 24:793–800

    Article  PubMed  Google Scholar 

  • Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson disease. Arch Neurol 56:33–39

    Article  CAS  PubMed  Google Scholar 

  • Gilks WP, Abou-Sleiman PM, Gandhi S, Jain S, Singleton A, Lees AJ et al (2005) A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet 365:415–416

    CAS  PubMed  Google Scholar 

  • Grünblatt E, Mandel S, Jacob-Hirsch J, Zeligson S, Amariglo N, Rechavi G et al (2004) Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm 111:1543–1573

    Article  PubMed  Google Scholar 

  • Grünblatt E, Zehetmayer S, Jacob CP, Müller T, Jost WH, Riederer P (2010) Pilot study: peripheral biomarkers for diagnosing sporadic Parkinson’s disease. J Neural Transm 117:1387–1393

    Article  PubMed  Google Scholar 

  • Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322

    Article  CAS  PubMed  Google Scholar 

  • Jain AK, Bloom DA, Jaiswal AK (2005) Nuclear import and export signals in control of Nrf2. J Biol Chem 280:29158–29168

    Article  CAS  PubMed  Google Scholar 

  • Johansen KK, Wang L, Aasly JO, White LR, Matson WR, Henchcliffe C et al (2009) Metabolomic profiling in LRRK2-related Parkinson’s disease. PLoS ONE 4:e7551

    Article  PubMed Central  PubMed  Google Scholar 

  • Kachergus J, Mata IF, Hulihan M, Taylor JP, Lincoln S, Aasly J et al (2005) Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am J Hum Genet 76:672–680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiffin R, Christian C, Knecht E, Cuervo AM (2004) Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 15:4829–4840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar H, Lim HW, More SV, Kim BW, Koppula S, Kim IS et al (2012) The role of free radicals in the aging brain and Parkinson’s disease: convergence and parallelism. Int J Mol Sci 13:10478–10504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • LeWitt PA, Huber BR, Zhang J (2013) An update on CSF biomarkers of Parkinson’s disease. In: Mandel S (ed) Neurodegenerative diseases: integrative PPPM approach as the medicine of the future, advances in predictive, preventive, and personalized medicine, vol 2. Springer, Dordrecht, pp 161–184

    Chapter  Google Scholar 

  • Liu T, Daniels CK, Cao S (2012) Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 136:354–374

    Article  CAS  PubMed  Google Scholar 

  • Mandel S, Grunblatt E, Riederer P, Amariglio N, Jacob-Hirsch J, Rechavi G et al (2005) Gene expression profiling of sporadic Parkinson’s disease substantia nigra pars compacta reveals impairment of ubiquitin-proteasome subunits, SKP1A, aldehyde dehydrogenase, and chaperone HSC-70. Ann NY Acad Sci 1053:356–375

    Article  CAS  PubMed  Google Scholar 

  • Martin I, Kim JW, Dawson VL, Dawson TM (2014) LRRK2 pathobiology in Parkinson’s disease. J Neurochem 131:554–565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Molochnikov L, Rabey JM, Dobronevsky E, Bonucelli U, Ceravolo R, Frosini D et al (2012) A molecular signature in blood identifies early Parkinson’s disease. Mol Neurodegener 7:26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura K, Wang W, Kang UJ (1997) The role of glutathione in dopaminergic neuronal survival. J Neurochem 69:1850–1858

    Article  CAS  PubMed  Google Scholar 

  • Nandhagopal R, Mak E, Schulzer M, McKenzie J, McCormick S, Sossi V et al (2008) Progression of dopaminergic dysfunction in a LRRK2 kindred: a multitracer PET study. Neurology 71:1790–1795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajput AH, Rajput A (2014) Accuracy of Parkinson disease diagnosis unchanged in 2 decades. Neurology 83:386–387

    Article  PubMed  Google Scholar 

  • Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA et al (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 66:75–85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Redeker V, Pemberton S, Bienvenut W, Bousset L, Melki R (2012) Identification of protein interfaces between α-synuclein, the principal component of Lewy bodies in Parkinson disease, and the molecular chaperones human Hsc70 and the yeast Ssa1p. J Biol Chem 287:32630–32639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sala G, Arosio A, Stefanoni G, Melchionda L, Riva C, Marinig D et al (2013) Rotenone upregulates alpha-synuclein and myocyte enhancer factor 2D independently from lysosomal degradation inhibition. Biomed Res Int 2013:846725

    Article  PubMed Central  PubMed  Google Scholar 

  • Schrag A, Schott JM (2006) Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism. Lancet Neurol 5:355–363

    Article  CAS  PubMed  Google Scholar 

  • Shi M, Bradner J, Hancock AM, Chung KA, Quinn JF, Peskind ER et al (2011) Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann Neurol 69:570–580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shults CW, Haas RH, Passov D, Beal MF (1997) Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects. Ann Neurol 42:261–264

    Article  CAS  PubMed  Google Scholar 

  • Suh JH, Shenvi SV, Dixon BM, Liu H, Jaiswal AK, Liu RM et al (2004) Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci USA 101:3381–3386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uitti RJ, Calne DB (1993) Pathogenesis of idiopathic parkinsonism. Eur Neurol 33(Suppl 1):6–23

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Beaumont Health System’s Neuroscience Center of Excellence and by donations from Ms. Marilyn Bishop and the family of Mr. Norman Merollis, which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Loeffler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loeffler, D.A., Smith, L.M., Coffey, M.P. et al. CSF Nrf2 and HSPA8 in Parkinson’s disease patients with and without LRRK2 gene mutations. J Neural Transm 123, 179–187 (2016). https://doi.org/10.1007/s00702-015-1479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-015-1479-0

Keywords

Navigation