Skip to main content

Advertisement

Log in

Insulin sensitizers improve learning and attenuate tau hyperphosphorylation and neuroinflammation in 3xTg-AD mice

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Sporadic Alzheimer’s disease (AD) is a multifactorial metabolic brain disorder characterized by progressive neurodegeneration. Decreased brain energy and glucose metabolism occurs before the appearance of AD symptoms and worsens while the disease progresses. Deregulated brain insulin signaling has also been found in AD recently. To restore brain insulin sensitivity and glucose metabolism, pioglitazone and rosiglitazone, two insulin sensitizers commonly used for treating type 2 diabetes, have been studied and shown to have some beneficial effects in AD mouse models. However, the molecular mechanisms of the beneficial effects remain elusive. In the present study, we treated the 3xTg-AD mice, a widely used mouse model of AD, with pioglitazone and rosiglitazone for 4 months and studied the effects of the treatments on cognitive performance and AD-related brain alterations. We found that the chronic treatment improved spatial learning, enhanced AKT signaling, and attenuated tau hyperphosphorylation and neuroinflammation. These findings shed new light on the possible mechanisms by which these two insulin sensitizers might be useful for treating AD and support further clinical trials evaluating the efficacy of these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639

    Article  CAS  PubMed  Google Scholar 

  • Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J, Kern W (2004) Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29(10):1326–1334. doi:10.1016/j.psyneuen.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  • Benedict C, Hallschmid M, Schmitz K, Schultes B, Ratter F, Fehm HL, Born J, Kern W (2007) Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology 32(1):239–243. doi:10.1038/sj.npp.1301193

    Article  CAS  PubMed  Google Scholar 

  • Bensadoun A, Weinstein D (1976) Assay of proteins in the presence of interfering materials. Anal Biochem 70(1):241–250

    Article  CAS  PubMed  Google Scholar 

  • Blanchard J, Wanka L, Tung YC, Cardenas-Aguayo Mdel C, LaFerla FM, Iqbal K, Grundke-Iqbal I (2010) Pharmacologic reversal of neurogenic and neuroplastic abnormalities and cognitive impairments without affecting Abeta and tau pathologies in 3xTg-AD mice. Acta Neuropathol 120(5):605–621. doi:10.1007/s00401-010-0734-6

    Article  CAS  PubMed  Google Scholar 

  • Brunmair B, Staniek K, Lehner Z, Dey D, Bolten CW, Stadlbauer K, Luger A, Furnsinn C (2011) Lipophilicity as a determinant of thiazolidinedione action in vitro: findings from BLX-1002, a novel compound without affinity to PPARs. Am J Physiol Cell Physiol 300(6):C1386–C1392. doi:10.1152/ajpcell.00401.2010

    Article  CAS  PubMed  Google Scholar 

  • Carta AR (2013) PPAR-gamma: therapeutic prospects in Parkinson’s disease. Curr Drug Targets 14(7):743–751

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Liang Z, Blanchard J, Dai CL, Sun S, Lee MH, Grundke-Iqbal I, Iqbal K, Liu F, Gong CX (2013) A non-transgenic mouse model (icv-STZ mouse) of Alzheimer’s disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol 47(2):711–725. doi:10.1007/s12035-012-8375-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Deng Y, Zhang B, Gong CX (2014a) Deregulation of brain insulin signaling in Alzheimer’s disease. Neurosci Bull 30(2):282–294. doi:10.1007/s12264-013-1408-x

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Liang Z, Tian Z, Blanchard J, Dai CL, Chalbot S, Iqbal K, Liu F, Gong CX (2014b) intracerebroventricular streptozotocin exacerbates Alzheimer-like changes of 3xTg-AD mice. Mol Neurobiol 49(1):547–562. doi:10.1007/s12035-013-8539-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Run X, Liang Z, Zhao Y, Dai CL, Iqbal K, Liu F, Gong CX (2014c) Intranasal insulin prevents anesthesia-induced hyperphosphorylation of tau in 3xTg-AD mice. Front Aging Neurosci 6:100. doi:10.3389/fnagi.2014.00100

    PubMed Central  PubMed  Google Scholar 

  • Chen Y, Zhao Y, Dai CL, Liang Z, Run X, Iqbal K, Liu F, Gong CX (2014d) Intranasal insulin restores insulin signaling, increases synaptic proteins, and reduces Abeta level and microglia activation in the brains of 3xTg-AD mice. Exp Neurol. doi:10.1016/j.expneurol.2014.06.004

    Google Scholar 

  • Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1):29–38. doi:10.1001/archneurol.2011.233

    Article  PubMed Central  PubMed  Google Scholar 

  • de la Monte SM (2012) Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 9(1):35–66

    Article  PubMed Central  PubMed  Google Scholar 

  • de la Monte SM, Wands JR (2008) Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2(6):1101–1113

    Article  PubMed Central  PubMed  Google Scholar 

  • Denner LA, Rodriguez-Rivera J, Haidacher SJ, Jahrling JB, Carmical JR, Hernandez CM, Zhao Y, Sadygov RG, Starkey JM, Spratt H, Luxon BA, Wood TG, Dineley KT (2012) Cognitive enhancement with rosiglitazone links the hippocampal PPARgamma and ERK MAPK signaling pathways. J Neurosci 32(47):16725–16735a. doi:10.1523/JNEUROSCI.2153-12.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dickson DW, Crystal HA, Bevona C, Honer W, Vincent I, Davies P (1995) Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 16(3):285–298 (discussion 298–304)

    Article  CAS  PubMed  Google Scholar 

  • Drachman DA (2014) The amyloid hypothesis, time to move on: Amyloid is the downstream result, not cause, of Alzheimer’s disease. Alzheimers Dement 10(3):372–380. doi:10.1016/j.jalz.2013.11.003

    Article  PubMed  Google Scholar 

  • Escribano L, Simon AM, Perez-Mediavilla A, Salazar-Colocho P, Del Rio J, Frechilla D (2009) Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer’s disease mouse model. Biochem Biophys Res Commun 379(2):406–410. doi:10.1016/j.bbrc.2008.12.071

    Article  CAS  PubMed  Google Scholar 

  • Escribano L, Simon AM, Gimeno E, Cuadrado-Tejedor M, Lopez de Maturana R, Garcia-Osta A, Ricobaraza A, Perez-Mediavilla A, Del Rio J, Frechilla D (2010) Rosiglitazone rescues memory impairment in Alzheimer’s transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology 35(7):1593–1604. doi:10.1038/npp.2010.32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, Tuor UI, Glazner G, Hanson LR, Frey WH 2nd, Toth C (2008) Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain 131(Pt 12):3311–3334. doi:10.1093/brain/awn288

    PubMed  Google Scholar 

  • Freiherr J, Hallschmid M, Frey WH 2nd, Brunner YF, Chapman CD, Holscher C, Craft S, De Felice FG, Benedict C (2013) Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs 27(7):505–514. doi:10.1007/s40263-013-0076-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geldmacher DS, Fritsch T, McClendon MJ, Landreth G (2011) A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch Neurol 68(1):45–50. doi:10.1001/archneurol.2010.229

    Article  PubMed  Google Scholar 

  • Gong CX, Liu F, Grundke-Iqbal I, Iqbal K (2006) Impaired brain glucose metabolism leads to Alzheimer neurofibrillary degeneration through a decrease in tau O-GlcNAcylation. J Alzheimers Dis 9(1):1–12

    CAS  PubMed  Google Scholar 

  • Gong CX, Grundke-Iqbal I, Iqbal K (2010) Targeting tau protein in Alzheimer’s disease. Drugs Aging 27(5):351–365. doi:10.2165/11536110-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Szelies B, Kessler J, Herholz K (1991) Abnormalities of energy metabolism in Alzheimer’s disease studied with PET. Ann N Y Acad Sci 640:65–71

    CAS  PubMed  Google Scholar 

  • Hernandez F, Gomez de Barreda E, Fuster-Matanzo A, Lucas JJ, Avila J (2010) GSK3: a possible link between beta amyloid peptide and tau protein. Exp Neurol 223(2):322–325. doi:10.1016/j.expneurol.2009.09.011

    Article  CAS  PubMed  Google Scholar 

  • Holzer M, Holzapfel HP, Zedlick D, Bruckner MK, Arendt T (1994) Abnormally phosphorylated tau protein in Alzheimer’s disease: heterogeneity of individual regional distribution and relationship to clinical severity. Neuroscience 63(2):499–516

    Article  CAS  PubMed  Google Scholar 

  • Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490(1–3):115–125. doi:10.1016/j.ejphar.2004.02.049

    Article  CAS  PubMed  Google Scholar 

  • Iqbal K, Grundke-Iqbal I (2005) Metabolic/signal transduction hypothesis of Alzheimer’s disease and other tauopathies. Acta Neuropathol 109(1):25–31. doi:10.1007/s00401-004-0951-y

    Article  CAS  PubMed  Google Scholar 

  • Iqbal K, Grundke-Iqbal I (2010) Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement 6(5):420–424. doi:10.1016/j.jalz.2010.04.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kummer MP, Schwarzenberger R, Sayah-Jeanne S, Dubernet M, Walczak R, Hum DW, Schwartz S, Axt D, Heneka MT (2014) Pan-PPAR modulation effectively protects APP/PS1 mice from amyloid deposition and cognitive deficits. Mol Neurobiol. doi:10.1007/s12035-014-8743-4

    Google Scholar 

  • Liu Y, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX (2008) Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett 582(2):359–364. doi:10.1016/j.febslet.2007.12.035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2009) Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer’s disease. J Neurochem 111(1):242–249. doi:10.1111/j.1471-4159.2009.06320.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011) Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol 225(1):54–62. doi:10.1002/path.2912

    Article  CAS  PubMed  Google Scholar 

  • Mandrekar-Colucci S, Karlo JC, Landreth GE (2012) Mechanisms underlying the rapid peroxisome proliferator-activated receptor-gamma-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease. J Neurosci 32(30):10117–10128. doi:10.1523/JNEUROSCI.5268-11.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marks DR, Tucker K, Cavallin MA, Mast TG, Fadool DA (2009) Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci 29(20):6734–6751. doi:10.1523/JNEUROSCI.1350-09.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masciopinto F, Di Pietro N, Corona C, Bomba M, Pipino C, Curcio M, Di Castelnuovo A, Ciavardelli D, Silvestri E, Canzoniero LM, Sekler I, Pandolfi A, Sensi SL (2012) Effects of long-term treatment with pioglitazone on cognition and glucose metabolism of PS1-KI, 3xTg-AD, and wild-type mice. Cell Death Dis 3:e448. doi:10.1038/cddis.2012.189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Metcalfe MJ, Figueiredo-Pereira ME (2010) Relationship between tau pathology and neuroinflammation in Alzheimer’s disease. Mt Sinai J Med 77(1):50–58. doi:10.1002/msj.20163

    Article  PubMed Central  PubMed  Google Scholar 

  • Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297(5868):681–683

    Article  CAS  PubMed  Google Scholar 

  • Paez J, Sellers WR (2003) PI3 K/PTEN/AKT pathway. A critical mediator of oncogenic signaling. Cancer Treat Res 115:145–167

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos P, Rosa-Neto P, Rochford J, Hamel E (2013) Pioglitazone improves reversal learning and exerts mixed cerebrovascular effects in a mouse model of Alzheimer’s disease with combined amyloid-beta and cerebrovascular pathology. PLoS ONE 8(7):e68612. doi:10.1371/journal.pone.0068612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pedersen WA, Flynn ER (2004) Insulin resistance contributes to aberrant stress responses in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Dis 17(3):500–506. doi:10.1016/j.nbd.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  • Pedersen WA, McMillan PJ, Kulstad JJ, Leverenz JB, Craft S, Haynatzki GR (2006) Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp Neurol 199(2):265–273. doi:10.1016/j.expneurol.2006.01.018

    Article  CAS  PubMed  Google Scholar 

  • Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, Fishel MA, Plymate SR, Breitner JC, DeGroodt W, Mehta P, Craft S (2008) Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 70(6):440–448. doi:10.1212/01.WNL.0000265401.62434.36

    Article  CAS  PubMed  Google Scholar 

  • Risner ME, Saunders AM, Altman JF, Ormandy GC, Craft S, Foley IM, Zvartau-Hind ME, Hosford DA, Roses AD (2006) Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J 6(4):246–254. doi:10.1038/sj.tpj.6500369

    CAS  PubMed  Google Scholar 

  • Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 8(3):247–268

    CAS  PubMed  Google Scholar 

  • Rodriguez-Rivera J, Denner L, Dineley KT (2011) Rosiglitazone reversal of Tg2576 cognitive deficits is independent of peripheral gluco-regulatory status. Behav Brain Res 216(1):255–261. doi:10.1016/j.bbr.2010.08.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sato T, Hanyu H, Hirao K, Kanetaka H, Sakurai H, Iwamoto T (2011) Efficacy of PPAR-gamma agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging 32(9):1626–1633. doi:10.1016/j.neurobiolaging.2009.10.009

    Article  CAS  PubMed  Google Scholar 

  • Searcy JL, Phelps JT, Pancani T, Kadish I, Popovic J, Anderson KL, Beckett TL, Murphy MP, Chen KC, Blalock EM, Landfield PW, Porter NM, Thibault O (2012) Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer’s disease. J Alzheimers Dis 30(4):943–961. doi:10.3233/JAD-2012-111661

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith GS, de Leon MJ, George AE, Kluger A, Volkow ND, McRae T, Golomb J, Ferris SH, Reisberg B, Ciaravino J et al (1992) Topography of cross-sectional and longitudinal glucose metabolic deficits in Alzheimer’s disease. Pathophysiologic implications. Arch Neurol 49(11):1142–1150

    Article  CAS  Google Scholar 

  • Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease: is this type 3 diabetes? J Alzheimers Dis 7(1):63–80

    CAS  PubMed  Google Scholar 

  • Storer PD, Xu J, Chavis J, Drew PD (2005) Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis. J Neuroimmunol 161(1–2):113–122. doi:10.1016/j.jneuroim.2004.12.015

    Article  CAS  PubMed  Google Scholar 

  • Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA, Trojanowski JQ, Arnold SE (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122(4):1316–1338. doi:10.1172/JCI59903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tatebayashi Y, Iqbal K, Grundke-Iqbal I (1999) Dynamic regulation of expression and phosphorylation of tau by fibroblast growth factor-2 in neural progenitor cells from adult rat hippocampus. J Neurosci 19(13):5245–5254

    CAS  PubMed  Google Scholar 

  • Toledo EM, Inestrosa NC (2010) Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1DeltaE9 mouse model of Alzheimer’s disease. Mol Psychiatry 15(3):272–285. doi:10.1038/mp.2009.72

    Article  CAS  PubMed  Google Scholar 

  • Tzimopoulou S, Cunningham VJ, Nichols TE, Searle G, Bird NP, Mistry P, Dixon IJ, Hallett WA, Whitcher B, Brown AP, Zvartau-Hind M, Lotay N, Lai RY, Castiglia M, Jeter B, Matthews JC, Chen K, Bandy D, Reiman EM, Gold M, Rabiner EA, Matthews PM (2010) A multi-center randomized proof-of-concept clinical trial applying [(1)(8)F]FDG-PET for evaluation of metabolic therapy with rosiglitazone XR in mild to moderate Alzheimer’s disease. J Alzheimers Dis 22(4):1241–1256. doi:10.3233/JAD-2010-100939

    CAS  PubMed  Google Scholar 

  • Vasudevan KM, Garraway LA (2010) AKT signaling in physiology and disease. Curr Top Microbiol Immunol 347:105–133. doi:10.1007/82_2010_66

    CAS  PubMed  Google Scholar 

  • Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate SR, Asthana S, Fishel MA, Kulstad JJ, Green PS, Cook DG, Kahn SE, Keeling ML, Craft S (2005) Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry 13(11):950–958. doi:10.1176/appi.ajgp.13.11.950

    PubMed  Google Scholar 

  • Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease: a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2(1):a006346. doi:10.1101/cshperspect.a006346

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT (2012) PPARgamma/RXRalpha-induced and CD36-mediated microglial amyloid-beta phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci 32(48):17321–17331. doi:10.1523/JNEUROSCI.1569-12.2012

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Ma D, Wang Y, Jiang T, Hu S, Zhang M, Yu X, Gong CX (2013) Intranasal insulin ameliorates tau hyperphosphorylation in a rat model of type 2 diabetes. J Alzheimers Dis 33(2):329–338. doi:10.3233/JAD-2012-121294

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the New York State Office for People with Developmental Disabilities as well as a grant from the Alzheimer’s Association (IIRG-10-170405). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Xin Gong.

Additional information

This paper is dedicated to late Professor Siegfried Hoyer, who made seminal contributions to our understanding of non-amyloid mechanisms of sporadic Alzheimer’s disease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Li, X., Blanchard, J. et al. Insulin sensitizers improve learning and attenuate tau hyperphosphorylation and neuroinflammation in 3xTg-AD mice. J Neural Transm 122, 593–606 (2015). https://doi.org/10.1007/s00702-014-1294-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1294-z

Keywords

Navigation