Skip to main content
Log in

Sequencing and expression analyses of the synaptic lipid raft adapter gene PAG1 in schizophrenia

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Disruption of synaptic networks has been advocated in the pathogenesis of psychiatric diseases like schizophrenia. The majority of synaptic proteins involved in neuronal communications are localized in lipid rafts. These rafts form the platform for coordinating neuronal signal transduction, by clustering interacting partners. The PAG1 protein is a transmembrane adaptor protein in the lipid raft signaling cluster that regulates Src family kinases (SFKs), a convergent point for multiple pathways regulating N-methyl-d-aspartate (NMDA) receptors. Reports of de novo missense mutations in PAG1 and SFK mediated reductions in tyrosine phosphorylation of NMDA receptor subunit proteins in schizophrenia patients, point to a putative role in schizophrenia pathogenesis. To evaluate this, we resequenced the entire coding region of PAG1 in Japanese schizophrenia patients (n = 1,140) and controls (n = 1,140). We identified eight missense variants, of which four were previously unreported. Case–control genetic association analysis of these variants in a larger cohort (n = 4,182) showed neither a statistically significant association of the individual variants with schizophrenia, nor any increased burden of the rare alleles in the patient group. Expression levels of PAG1 in post-mortem brain samples from schizophrenia patients and controls also showed no significant differences. To assess the precise role of PAG1 in schizophrenia, future studies with larger sample sizes are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65. doi:10.1038/nature11632

    Article  PubMed  Google Scholar 

  • Ayalew M, Le-Niculescu H, Levey D, Jain N, Changala B, Patel S, Winiger E, Breier A, Shekhar A, Amdur R, Koller D, Nurnberger J, Corvin A, Geyer M, Tsuang M, Salomon D, Schork N, Fanous A, O’Donovan M, Niculescu A (2012) Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 17(9):887–905. doi:10.1038/mp.2012.37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balan S, Iwayama Y, Toyota T, Toyoshima M, Maekawa M, Yoshikawa T (2014) 22q11. 2 deletion carriers and schizophrenia-associated novel variants. Br J Psychiatry. doi:10.1192/bjp.bp.113.138420

    PubMed  Google Scholar 

  • Bayés À, van de Lagemaat LN, Collins MO, Croning MD, Whittle IR, Choudhary JS, Grant SG (2010) Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci 14(1):19–21. doi:10.1038/nn.2719

    Article  PubMed Central  PubMed  Google Scholar 

  • Devlin B, Roeder K (2004) Genomic control for association studies. Biometrics 55(4):997–1004. doi:10.1111/j.0006-341X.1999.00997.x

    Article  Google Scholar 

  • Dobenecker M-W, Schmedt C, Okada M, Tarakhovsky A (2005) The ubiquitously expressed Csk adaptor protein Cbp is dispensable for embryogenesis and T-cell development and function. Mol Cell Biol 25(23):10533–10542. doi:10.1128/MCB.25.23.10533-10542.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Faludi G, Mirnics K (2011) Synaptic changes in the brain of subjects with schizophrenia. Int J Dev Neurosci 29(3):305–309. doi:10.1016/j.ijdevneu.2011.02.013

    Article  PubMed Central  PubMed  Google Scholar 

  • Foster LJ, de Hoog CL, Mann M (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci 100(10):5813–5818. doi:10.1073/pnas.0631608100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, Georgieva L, Rees E, Palta P, Ruderfer DM, Carrera N, Humphreys I, Johnson JS, Roussos P, Barker DD, Banks E, Milanova V, Grant SG, Hannon E, Rose SA, Chambert K, Mahajan M, Scolnick EM, Moran JL, Kirov G, Palotie A, McCarroll SA, Holmans P, Sklar P, Owen MJ, Purcell SM, O’Donovan MC (2014) De novo mutations in schizophrenia implicate synaptic networks. Nature 506(7487):179–184. doi:10.1038/nature12929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grant SG (2012) Synaptopathies: diseases of the synaptome. Curr Opin Neurobiol 22(3):522–529. doi:10.1016/j.conb.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  • Groveman BR, Feng S, Fang XQ, Pflueger M, Lin SX, Bienkiewicz EA, Yu X (2012) The regulation of N-methyl-d-aspartate receptors by Src kinase. FEBS J 279(1):20–28. doi:10.1111/j.1742-4658.2011.08413.x

    Article  CAS  PubMed  Google Scholar 

  • Hahn C-G, Wang H-Y, Cho D-S, Talbot K, Gur RE, Berrettini WH, Bakshi K, Kamins J, Borgmann-Winter KE, Siegel SJ, Gallop RJ, Arnold SE (2006) Altered neuregulin 1–erbB4 signaling contributes to NMDA> receptor hypofunction in schizophrenia. Nat Med 12(7):824–828. doi:10.1038/nm1418

    Article  CAS  PubMed  Google Scholar 

  • Hattori E, Toyota T, Ishitsuka Y, Iwayama Y, Yamada K, Ujike H, Morita Y, Kodama M, Nakata K, Minabe Y, Nakamura K, Iwata Y, Takei N, Mori N, Naitoh H, Yamanouchi Y, Iwata N, Ozaki N, Kato T, Nishikawa T, Kashiwa A, Suzuki M, Shioe K, Shinohara M, Hirano M, Nanko S, Akahane A, Ueno M, Kaneko N, Watanabe Y, Someya T, Hashimoto K, Iyo M, Itokawa M, Arai M, Nankai M, Inada T, Yoshida S, Kunugi H, Nakamura M, Iijima Y, Okazaki Y, Higuchi T, Yoshikawa T (2009) Preliminary genome-wide association study of bipolar disorder in the Japanese population. Am J Med Genet Part B: Neuropsychiatr Genet 150(8):1110–1117. doi:10.1002/ajmg.b.30941

    Article  Google Scholar 

  • Hrdinka M, Horejsi V (2013) PAG-a multipurpose transmembrane adaptor protein. Oncogene. doi:10.1038/onc.2013.485

    PubMed  Google Scholar 

  • Kawabuchi M, Satomi Y, Takao T, Shimonishi Y, Nada S, Nagai K, Tarakhovsky A, Okada M (2000) Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature 404(6781):999–1003. doi:10.1038/35010121

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S, Karitkina D, Langnaese K, Posevitz-Fejfar A, Schraven B, Xavier R, Seed B, Lindquist JA (2011) Phosphoprotein associated with glycosphingolipid-enriched microdomains differentially modulates Src kinase activity in brain maturation. PLoS One 6(9):e23978. doi:10.1371/journal.pone.0023978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lips ES, Cornelisse LN, Toonen RF, Min JL, Hultman C, Holmans P, O’Donovan M, Purcell S, Smit A, Verhage M, Sullivan PF, Visscher P, Posthuma D (2011) Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Mol Psychiatry 17(10):996–1006. doi:10.1038/mp.2011.117

    Article  PubMed Central  PubMed  Google Scholar 

  • MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, Jostins L, Habegger L, Pickrell JK, Montgomery SB, Albers CA, Zhang ZD, Conrad DF, Lunter G, Zheng H, Ayub Q, DePristo MA, Banks E, Hu M, Handsaker RE, Rosenfeld JA, Fromer M, Jin M, Mu XJ, Khurana E, Ye K, Kay M, Saunders GI, Suner M-M, Hunt T, Barnes IHA, Amid C, Carvalho-Silva, Bignell AH, Snow C, Yngvadottir B, Bumpstead S, Cooper DN, Xue Y, Romero IG, Consortium GP, Wang J, Li Y, Gibbs RA, McCarroll SA, Dermitzakis ET, Pritchard JK, Barrett JC, Harrow J, Hurles ME, Gerstein MB, Tyler-Smith C (2012) A systematic survey of loss-of-function variants in human protein-coding genes. Science 335(6070):823–828. doi:10.1126/science.1215040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maynard TM, Sikich L, Lieberman JA, LaMantia A-S (2001) Neural development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia. Schizophr Bull 27(3):457–476

    Article  CAS  PubMed  Google Scholar 

  • Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278(5346):2075–2080. doi:10.1126/science.278.5346.2075

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P, O/’Dushlaine C, Chambert K, Bergen SE, Kahler A, Duncan L, Stahl E, Genovese G, Fernandez E, Collins MO, Komiyama NH, Choudhary JS, Magnusson PKE, Banks E, Shakir K, Garimella K, Fennell T, DePristo M, Grant SGN, Haggarty SJ, Gabriel S, Scolnick EM, Lander ES, Hultman CM, Sullivan PF, McCarroll SA, Sklar P (2014) A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506(7487):185–190. doi:10.1038/nature12975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S, Bergen SE, Collins AL, Crowley JJ, Fromer M, Kim Y, Lee SH, Magnusson PKE, Sanchez N, Stahl EA, Williams S, Wray NR, Xia K, Bettella F, Borglum AD, Bulik-Sullivan BK, Cormican P, Craddock N, de Leeuw C, Durmishi N, Gill M, Golimbet V, Hamshere ML, Holmans P, Hougaard DM, Kendler KS, Lin K, Morris DW, Mors O, Mortensen PB, Neale BM, O’Neill FA, Owen MJ, Milovancevic MP, Posthuma D, Powell J, Richards AL, Riley BP, Ruderfer D, Rujescu D, Sigurdsson E, Silagadze T, Smit AB, Stefansson H, Steinberg S, Suvisaari J, Tosato S, Verhage M, Walters JT, Multicenter Genetic Studies of Schizophrenia C, Psychosis Endophenotypes International C, Wellcome Trust Case Control C, Bramon E, Corvin AP, O’Donovan MC, Stefansson K, Scolnick E, Purcell S, McCarroll SA, Sklar P, Hultman CM, Sullivan PF (2013) Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 45(10):1150–1159. doi:10.1038/ng.2742

    Article  CAS  PubMed  Google Scholar 

  • Salter MW, Kalia LV (2004) Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 5(4):317–328. doi:10.1038/nrn1368

    Article  CAS  PubMed  Google Scholar 

  • Sebastião AM, Colino-Oliveira M, Assaife-Lopes N, Dias RA, Ribeiro JA (2012) Lipid rafts, synaptic transmission and plasticity: impact in age-related neurodegenerative diseases. Neuropharmacology. doi:10.1016/j.neuropharm.2012.06.053

    Google Scholar 

  • Sekino-Suzuki N, Yuyama K, Miki T, Kaneda M, Suzuki H, Yamamoto N, Yamamoto T, Oneyama C, Okada M, Kasahara K (2013) Involvement of gangliosides in the process of Cbp/PAG phosphorylation by Lyn in developing cerebellar growth cones. J Neurochem 124(4):514–522. doi:10.1111/jnc.12040

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39. doi:10.1038/35036052

    Article  CAS  PubMed  Google Scholar 

  • Stephan KE, Baldeweg T, Friston KJ (2006) Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry 59(10):929–939. doi:10.1016/j.biopsych.2005.10.005

    Article  CAS  PubMed  Google Scholar 

  • Sullivan PF (2012) Puzzling over schizophrenia: schizophrenia as a pathway disease. Nat Med 18(2):210–211. doi:10.1038/nm.2670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takata A, Iwayama Y, Fukuo Y, Ikeda M, Okochi T, Maekawa M, Toyota T, Yamada K, Hattori E, Ohnishi T, Toyoshima M, Ujike H, Inada T, Kunugi H, Ozaki N, Nanko S, Nakamura K, Mori N, Kanba S, Iwata N, Kato T, Yoshikawa T (2012) A population-specific uncommon variant in GRIN3A associated with schizophrenia. Biol Psychiatry. doi:10.1016/j.biopsych.2012.10.024

    PubMed  Google Scholar 

  • Toyosima M, Maekawa M, Toyota T, Iwayama Y, Arai M, Ichikawa T, Miyashita M, Arinami T, Itokawa M, Yoshikawa T (2011) Schizophrenia with the 22q11. 2 deletion and additional genetic defects: case history. The. Br J Psychiatry 199(3):245–246. doi:10.1192/bjp.bp.111.093849

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Huo J, Tan JE-L, Lam K-P (2005) Cbp deficiency alters Csk localization in lipid rafts but does not affect T-cell development. Mol cell Biol 25(19):8486–8495. doi:10.1128/MCB.25.19.8486-8495.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, Gogos JA, Karayiorgou M (2011) Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet 43(9):864–868. doi:10.1038/ng.902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamada K, Nakamura K, Minabe Y, Iwayama-Shigeno Y, Takao H, Toyota T, Hattori E, Takei N, Sekine Y, Suzuki K, Iwata Y, Miyoshi K, Honda A, Baba K, Katayama T, Tohyama M, Mori N, Yoshikawa T (2004) Association analysis of FEZ1 variants with schizophrenia in Japanese cohorts. Biol Psychiatry 56(9):683–690. doi:10.1016/j.biopsych.2004.08.015

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Hattori E, Iwayama Y, Ohnishi T, Ohba H, Toyota T, Takao H, Minabe Y, Nakatani N, Higuchi T, Detera-Wadleigh SD, Yoshikawa T (2006) Distinguishable haplotype blocks in the HTR3A and HTR3B region in the japanese reveal evidence of association of HTR3B with female major depression. Biol Psychiatry 60(2):192–201. doi:10.1016/j.biopsych.2005.11.008

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Kabata Y, Nakazono K, Takahashi A, Saito S, Hosono N, Kubo M, Nakamura Y, Kamatani N (2008) Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects on population-based association studies. Am J Hum Genet 83(4):445–456. doi:10.1016/j.ajhg.2008.08.019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported in part by Grants-in-Aid for Scientific Research (T.Y.) and by Grant-in-Aid for Scientific Research on Innovative Areas (T.Y.), from the Japan Society for the Promotion of Science (JSPS), Japan. In addition, this study was supported by RIKEN Brain Science Institute Funds (T.Y.), and a part of this study is the result of the “Development of biomarker candidates for social behavior” project, carried out under the Strategic Research Program for Brain Sciences by the Ministry of Education, Culture, Sports, Science and Technology of Japan (T.Y.).

Conflict of interest

The authors declare that they have no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Yoshikawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balan, S., Iwayama, Y., Yamada, K. et al. Sequencing and expression analyses of the synaptic lipid raft adapter gene PAG1 in schizophrenia. J Neural Transm 122, 477–485 (2015). https://doi.org/10.1007/s00702-014-1269-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1269-0

Keywords

Navigation