Skip to main content

Advertisement

Log in

Therapeutic potential of targeting glutamate receptors in Parkinson’s disease

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Glutamate plays a complex role in many aspects of Parkinson’s disease including the loss of dopaminergic neurons, the classical motor symptoms as well as associated non-motor symptoms and the treatment-related side effect, l-DOPA-induced dyskinesia. This widespread involvement opens up possibilities for glutamate-based therapies to provide a more rounded approach to treatment than is afforded by current dopamine replacement therapies. Beneficial effects of blocking postsynaptic glutamate transmission have already been noted in a range of preclinical studies using antagonists of NMDA receptors or negative allosteric modulators of metabotropic glutamate receptor 5 (mGlu5), while positive allosteric modulators of mGlu4 in particular, although at an earlier stage of investigation, also look promising. This review addresses each of the key features of Parkinson’s disease in turn, summarising the contribution glutamate makes to that feature and presenting an up-to-date account of the potential for drugs acting at ionotropic or metabotropic glutamate receptors to provide relief. Whilst only a handful of these have progressed to clinical trials to date, notably NMDA and NR2B antagonists against motor symptoms and l-DOPA-induced dyskinesia, with mGlu5 negative allosteric modulators also against l-DOPA-induced dyskinesia, the mainly positive outcomes of these trials, coupled with supportive preclinical data for other strategies in animal models of Parkinson’s disease and l-DOPA-induced dyskinesia, raise cautious optimism that a glutamate-based therapeutic approach will have significant impact on the treatment of Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aarsland D, Zaccai J, Brayne C (2005) A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov Disord 20(10):1255–1263. doi:10.1002/mds.20527

    PubMed  Google Scholar 

  • Aarsland D, Ballard C, Walker Z, Bostrom F, Alves G, Kossakowski K, Leroi I, Pozo-Rodriguez F, Minthon L, Londos E (2009) Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol 8:613–618. doi:10.1016/s14744422(09)70146-2

    CAS  PubMed  Google Scholar 

  • Abou-Sleiman PM, Healy DG, Wood NW (2004) Causes of Parkinson’s disease: genetics of DJ-1. Cell Tissue Res 318(1):185–188. doi:10.1007/s00441-004-0922-6

    CAS  PubMed  Google Scholar 

  • Addex Therapeutics. Geneva S (21 Mar 2012) http://www.addextherapeutics.com/investors/press-releases/news-details/article/addex-reports-positive-top-line-phase-iia-data-for-dipraglurant-1in-parkinsons-disease-levodopa-indu/. Accessed 3 Oct 2012

  • Addy C, Assaid C, Hreniuk D, Stroh M, Xu Y, Herring WJ, Ellenbogen A, Jinnah HA, Kirby L, Leibowitz MT, Stewart RM, Tarsy D, Tetrud J, Stoch SA, Gottesdiener K, Wagner J (2009) Single-dose administration of MK-0657, an NR2B-selective NMDA antagonist, does not result in clinically meaningful improvement in motor function in patients with moderate Parkinson’s disease. J Clin Pharmacol 49(7):856–864. doi:10.1177/0091270009336735

    CAS  PubMed  Google Scholar 

  • Aguirre JA, Kehr J, Yoshitake T, Liu FL, Rivera A, Fernandez-Espinola S, Andbjer B, Leo G, Medhurst AD, Agnati LF, Fuxe K (2005) Protection but maintained dysfunction of nigral dopaminergic nerve cell bodies and striatal dopaminergic terminals in MPTP-lesioned mice after acute treatment with the mGluR5 antagonist MPEP. Brain Res 1033(2):216–220. doi:10.1016/j.brainres.2004.11.040

    CAS  PubMed  Google Scholar 

  • Ahmed I, Bose SK, Pavese N, Ramlackhansingh A, Turkheimer F, Hotton G, Hammers A, Brooks DJ (2011) Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain 134(Pt 4):979–986. doi:10.1093/brain/awr028

    PubMed  Google Scholar 

  • Aicher SA, Sharma S, Pickel VM (1999) N-Methyl-d-aspartate receptors are present in vagal afferents and their dendritic targets in the nucleus tractus solitarius. Neuroscience 91(1):119–132

    CAS  PubMed  Google Scholar 

  • Alam M, Danysz W, Schmidt WJ, Dekundy A (2009) Effects of glutamate and alpha2-noradrenergic receptor antagonists on the development of neurotoxicity produced by chronic rotenone in rats. Toxicol Appl Pharmacol 240(2):198–207. doi:10.1016/j.taap.2009.07.010

    CAS  PubMed  Google Scholar 

  • Albin RL, Greenamyre JT (1992) Alternative excitotoxic hypotheses. Neurology 42(4):733–738

    CAS  PubMed  Google Scholar 

  • Aleyasin H, Rousseaux MW, Phillips M, Kim RH, Bland RJ, Callaghan S, Slack RS, During MJ, Mak TW, Park DS (2007) The Parkinson’s disease gene DJ-1 is also a key regulator of stroke-induced damage. Proc Natl Acad Sci USA 104(47):18748–18753. doi:10.1073/pnas.0709379104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alt A, Weiss B, Ornstein PL, Gleason SD, Bleakman D, Stratford RE Jr, Witkin JM (2007) Anxiolytic-like effects through a GLUK5 kainate receptor mechanism. Neuropharmacology 52(7):1482–1487. doi:10.1016/j.neuropharm.2007.02.005

    CAS  PubMed  Google Scholar 

  • Ambrosi G, Armentero MT, Levandis G, Bramanti P, Nappi G, Blandini F (2010) Effects of early and delayed treatment with an mGluR5 antagonist on motor impairment, nigrostriatal damage and neuroinflammation in a rodent model of Parkinson’s disease. Brain Res Bull 82(1–2):29–38. doi:10.1016/j.brainresbull.2010.01.011

    CAS  PubMed  Google Scholar 

  • Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15(4):961–973

    CAS  PubMed  Google Scholar 

  • Armentero MT, Fancellu R, Nappi G, Bramanti P, Blandini F (2006) Prolonged blockade of NMDA or mGluR5 glutamate receptors reduces nigrostriatal degeneration while inducing selective metabolic changes in the basal ganglia circuitry in a rodent model of Parkinson’s disease. Neurobiol Dis 22(1):1–9. doi:10.1016/j.nbd.2005.09.010

    CAS  PubMed  Google Scholar 

  • Austin PJ, Betts MJ, Broadstock M, O’Neill MJ, Mitchell SN, Duty S (2010) Symptomatic and neuroprotective effects following activation of nigral group III metabotropic glutamate receptors in rodent models of Parkinson’s disease. Br J Pharmacol 160(7):1741–1753. doi:10.1111/j.1476-5381.2010.00820.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ba M, Kong M, Yang H, Ma G, Lu G, Chen S, Liu Z (2006) Changes in subcellular distribution and phosphorylation of GluR1 in lesioned striatum of 6-hydroxydopamine-lesioned and l-DOPA-treated rats. Neurochem Res 31(11):1337–1347. doi:10.1007/s11064-006-9177-9

    CAS  PubMed  Google Scholar 

  • Ba M, Kong M, Yu G, Sun X, Liu Z, Wang X (2011) GluR1 phosphorylation and persistent expression of levodopa-induced motor response alterations in the Hemi-Parkinsonian rat. Neurochem Res 36(6):1135–1144. doi:10.1007/s11064-011-0461-y

    CAS  PubMed  Google Scholar 

  • Banerjee B, Medda BK, Zheng Y, Miller H, Miranda A, Sengupta JN, Shaker R (2009) Alterations in N-methyl-d-aspartate receptor subunits in primary sensory neurons following acid-induced esophagitis in cats. Am J Physiol Gastrointest Liver Physiol 296:G66–G77. doi:10.1152/ajpgi.90419.2008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Battaglia G, Busceti CL, Pontarelli F, Biagioni F, Fornai F, Paparelli A, Bruno V, Ruggieri S, Nicoletti F (2003) Protective role of group-II metabotropic glutamate receptors against nigro-striatal degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Neuropharmacology 45(2):155–166

    CAS  PubMed  Google Scholar 

  • Battaglia G, Busceti CL, Molinaro G, Biagioni F, Storto M, Fornai F, Nicoletti F, Bruno V (2004) Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J Neurosci 24(4):828–835. doi:10.1523/jneurosci.3831-03.2004

    CAS  PubMed  Google Scholar 

  • Battaglia G, Busceti CL, Molinaro G, Biagioni F, Traficante A, Nicoletti F, Bruno V (2006) Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurosci 26(27):7222–7229. doi:10.1523/jneurosci.1595-06.2006

    CAS  PubMed  Google Scholar 

  • Battaglia G, Molinaro G, Riozzi B, Storto M, Busceti CL, Spinsanti P, Bucci D, Di Liberto V, Mudo G, Corti C, Corsi M, Nicoletti F, Belluardo N, Bruno V (2009) Activation of mGlu3 receptors stimulates the production of GDNF in striatal neurons. PLoS ONE 4(8):e6591. doi:10.1371/journal.pone.0006591

    PubMed Central  PubMed  Google Scholar 

  • Bennouar KE, Uberti MA, Melon C, Bacolod MD, Jimenez HN, Cajina M, Kerkerian-Le Goff L, Doller D, Gubellini P (2013) Synergy between l-DOPA and a novel positive allosteric modulator of metabotropic glutamate receptor 4: implications for Parkinson’s disease treatment and dyskinesia. Neuropharmacology 66:158–169. doi:10.1016/j.neuropharm.2012.03.022

    CAS  PubMed  Google Scholar 

  • Berg D, Godau J, Trenkwalder C, Eggert K, Csoti I, Storch A, Huber H, Morelli-Canelo M, Stamelou M, Ries V, Wolz M, Schneider C, Di Paolo T, Gasparini F, Hariry S, Vandemeulebroecke M, Abi-Saab W, Cooke K, Johns D, Gomez-Mancilla B (2011) AFQ056 treatment of levodopa-induced dyskinesias: results of 2 randomized controlled trials. Mov Disord 26(7):1243–1250. doi:10.1002/mds.23616

    PubMed  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    CAS  PubMed  Google Scholar 

  • Bermejo PE (2008) Topiramate in managing impulse control disorders in Parkinson’s disease. Parkinsonism Relat Disord 14(5):448–449. doi:10.1016/j.parkreldis.2007.11.008

    PubMed  Google Scholar 

  • Betts MJ, O’Neill MJ, Duty S (2012) Allosteric modulation of the group III mGlu(4) receptor provides functional neuroprotection in the 6-hydroxydopamine rat model of Parkinson’s disease. Br J Pharmacol 166(8):2317–2330. doi:10.1111/j.1476-5381.2012.01943.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beurrier C, Lopez S, Revy D, Selvam C, Goudet C, Lherondel M, Gubellini P, Kerkerian-LeGoff L, Acher F, Pin JP, Amalric M (2009) Electrophysiological and behavioral evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental parkinsonism. FASEB J 23(10):3619–3628. doi:10.1096/fj.09-131789

    CAS  PubMed  Google Scholar 

  • Black KJ, Friedman JH (2006) Repetitive and impulsive behaviors in treated Parkinson disease. Neurology 67(7):1118–1119. doi:10.1212/01.wnl.0000243252.71365.81

    PubMed  Google Scholar 

  • Blanchet PJ, Konitsiotis S, Whittemore ER, Zhou ZL, Woodward RM, Chase TN (1999) Differing effects of N-methyl-d-aspartate receptor subtype selective antagonists on dyskinesias in levodopa-treated 1-methyl-4-phenyl-tetrahydropyridine monkeys. J Pharmacol Exp Ther 290(3):1034–1040

    CAS  PubMed  Google Scholar 

  • Blandini F (2010) An update on the potential role of excitotoxicity in the pathogenesis of Parkinson’s disease. Funct Neurol 25(2):65–71

    PubMed  Google Scholar 

  • Blandini F, Porter RH, Greenamyre JT (1996) Glutamate and Parkinson’s disease. Mol Neurobiol 12(1):73–94. doi:10.1007/bf02740748

    CAS  PubMed  Google Scholar 

  • Blandini F, Nappi G, Greenamyre JT (2001) Subthalamic infusion of an NMDA antagonist prevents basal ganglia metabolic changes and nigral degeneration in a rodent model of Parkinson’s disease. Ann Neurol 49(4):525–529

    CAS  PubMed  Google Scholar 

  • Brefel-Courbon C, Ory-Magne F, Thalamas C, Payoux P, Rascol O (2013) Nociceptive brain activation in patients with neuropathic pain related to Parkinson’s disease. Parkinsonism Relat Disord 19(5):548–552. doi:10.1016/j.parkreldis.2013.02.003

    PubMed  Google Scholar 

  • Breysse N, Baunez C, Spooren W, Gasparini F, Amalric M (2002) Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of parkinsonism. J Neurosci 22(13):5669–5678

    CAS  PubMed  Google Scholar 

  • Broadstock M, Austin PJ, Betts MJ, Duty S (2012) Antiparkinsonian potential of targeting group III metabotropic glutamate receptor subtypes in the rodent substantia nigra pars reticulata. Br J Pharmacol 165(4b):1034–1045. doi:10.1111/j.1476-5381.2011.01515.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brouillet E, Beal MF (1993) NMDA antagonists partially protect against MPTP induced neurotoxicity in mice. NeuroReport 4(4):387–390

    CAS  PubMed  Google Scholar 

  • Bruno V, Sureda FX, Storto M, Casabona G, Caruso A, Knopfel T, Kuhn R, Nicoletti F (1997) The neuroprotective activity of group-II metabotropic glutamate receptors requires new protein synthesis and involves a glial-neuronal signaling. J Neurosci 17(6):1891–1897

    CAS  PubMed  Google Scholar 

  • Calabresi P, Di Filippo M, Ghiglieri V, Tambasco N, Picconi B (2010) Levodopa-induced dyskinesias in patients with Parkinson’s disease: filling the bench-to-bedside gap. Lancet Neurol 9(11):1106–1117. doi:10.1016/s1474-4422(10)70218-0

    CAS  PubMed  Google Scholar 

  • Calon F, Morissette M, Ghribi O, Goulet M, Grondin R, Blanchet PJ, Bedard PJ, Di Paolo T (2002) Alteration of glutamate receptors in the striatum of dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys following dopamine agonist treatment. Prog Neuro-Psychopharmacol Biol Psychiatry 26(1):127–138

    CAS  Google Scholar 

  • Calon F, Rajput AH, Hornykiewicz O, Bedard PJ, Di Paolo T (2003) Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson’s disease. Neurobiol Dis 14(3):404–416

    CAS  PubMed  Google Scholar 

  • Caraci F, Molinaro G, Battaglia G, Giuffrida ML, Riozzi B, Traficante A, Bruno V, Cannella M, Merlo S, Wang X, Heinz BA, Nisenbaum ES, Britton TC, Drago F, Sortino MA, Copani A, Nicoletti F (2011) Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer’s disease: selective activation of mGlu2 receptors amplifies beta-amyloid toxicity in cultured neurons, whereas dual activation of mGlu2 and mGlu3 receptors is neuroprotective. Mol Pharmacol 79(3):618–626. doi:10.1124/mol.110.067488

    CAS  PubMed  Google Scholar 

  • Cenci MA, Lundblad M (2006) Post- versus presynaptic plasticity in L-DOPA-induced dyskinesia. J Neurochem 99(2):381–392. doi:10.1111/j.1471-4159.2006.04124.x

    CAS  PubMed  Google Scholar 

  • Chan P, Di Monte DA, Langston JW, Janson AM (1997) (+)MK-801 does not prevent MPTP-induced loss of nigral neurons in mice. J Pharmacol Exp Ther 280(1):439–446

    CAS  PubMed  Google Scholar 

  • Chaplan SR, Malmberg AB, Yaksh TL (1997) Efficacy of spinal NMDA receptor antagonism in formalin hyperalgesia and nerve injury evoked allodynia in the rat. J Pharmacol Exp Ther 280:829–838

    CAS  PubMed  Google Scholar 

  • Chatha BT, Bernard V, Streit P, Bolam JP (2000) Synaptic localization of ionotropic glutamate receptors in the rat substantia nigra. Neuroscience 101(4):1037–1051

    CAS  PubMed  Google Scholar 

  • Chaudhuri KR, Schapira AH (2009) Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 8(5):464–474. doi:10.1016/s1474-4422(09)70068-7

    CAS  PubMed  Google Scholar 

  • Chen SR, Pan HL (2005) Distinct roles of group III metabotropic glutamate receptors in control of nociception and dorsal horn neurons in normal and nerve-injured rats. J Pharmacol Exp Ther 312(1):120–126. doi:10.1124/jpet.104.073817

    CAS  PubMed  Google Scholar 

  • Chen L, Liu J, Ali U, Gui ZH, Hou C, Fan LL, Wang Y, Wang T (2011) Chronic, systemic treatment with a metabotropic glutamate receptor 5 antagonist produces anxiolytic-like effects and reverses abnormal firing activity of projection neurons in the basolateral nucleus of the amygdala in rats with bilateral 6-OHDA lesions. Brain Res Bull 84(3):215–223. doi:10.1016/j.brainresbull.2011.01.005

    CAS  PubMed  Google Scholar 

  • Ciccarelli R, Di Iorio P, Bruno V, Battaglia G, D’Alimonte I, D’Onofrio M, Nicoletti F, Caciagli F (1999) Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia 27(3):275–281

    CAS  PubMed  Google Scholar 

  • Collins S, Sigtermans MJ, Dahan A, Zuurmond WWA, Perez RSGM (2010) NMDA receptor antagonists for the treatment of neuropathic pain. Pain Med 11:1726–1742

    PubMed  Google Scholar 

  • Conn PJ, Battaglia G, Marino MJ, Nicoletti F (2005) Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 6(10):787–798. doi:10.1038/nrn1763

    CAS  PubMed  Google Scholar 

  • Corti C, Battaglia G, Molinaro G, Riozzi B, Pittaluga A, Corsi M, Mugnaini M, Nicoletti F, Bruno V (2007) The use of knock-out mice unravels distinct roles for mGlu2 and mGlu3 metabotropic glutamate receptors in mechanisms of neurodegeneration/neuroprotection. J Neurosci 27(31):8297–8308. doi:10.1523/jneurosci.1889-07.2007

    CAS  PubMed  Google Scholar 

  • Cuomo D, Martella G, Barabino E, Platania P, Vita D, Madeo G, Selvam C, Goudet C, Oueslati N, Pin JP, Acher F, Pisani A, Beurrier C, Melon C, Kerkerian-Le Goff L, Gubellini P (2009) Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: implications for Parkinson’s disease treatment. J Neurochem 109(4):1096–1105. doi:10.1111/j.1471-4159.2009.06036.x

    CAS  PubMed  Google Scholar 

  • D’Alessandro PL, Corti C, Roth A, Ugolini A, Sava A, Montanari D, Bianchi F, Garland SL, Powney B, Koppe EL, Rocheville M, Osborne G, Perez P, de la Fuente J, De Los Frailes M, Smith PW, Branch C, Nash D, Watson SP (2010) The identification of structurally novel, selective, orally bioavailable positive modulators of mGluR2. Bioorg Med Chem Lett 20 (2):759–762. doi:10.1016/j.bmcl.2009.11.032

    Google Scholar 

  • Dawson L, Chadha A, Megalou M, Duty S (2000) The group II metabotropic glutamate receptor agonist, DCG-IV, alleviates akinesia following intranigral or intraventricular administration in the reserpine-treated rat. Br J Pharmacol 129(3):541–546. doi:10.1038/sj.bjp.0703105

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Leonibus E, Manago F, Giordani F, Petrosino F, Lopez S, Oliverio A, Amalric M, Mele A (2009) Metabotropic glutamate receptors 5 blockade reverses spatial memory deficits in a mouse model of Parkinson’s disease. Neuropsychopharmacology 34(3):729–738. doi:10.1038/npp.2008.129

    PubMed  Google Scholar 

  • de Rijk MC, Tzourio C, Breteler MM, Dartigues JF, Amaducci L, Lopez-Pousa S, Manubens-Bertran JM, Alperovitch A, Rocca WA (1997) Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry 62(1):10–15

    PubMed Central  PubMed  Google Scholar 

  • Dekundy A, Pietraszek M, Schaefer D, Cenci MA, Danysz W (2006) Effects of group I metabotropic glutamate receptors blockade in experimental models of Parkinson’s disease. Brain Res Bull 69(3):318–326. doi:10.1016/j.brainresbull.2005.12.009

    CAS  PubMed  Google Scholar 

  • Dhanya RP, Sidique S, Sheffler DJ, Nickols HH, Herath A, Yang L, Dahl R, Ardecky R, Semenova S, Markou A, Conn PJ, Cosford ND (2011) Design and synthesis of an orally active metabotropic glutamate receptor subtype-2 (mGluR2) positive allosteric modulator (PAM) that decreases cocaine self-administration in rats. J Med Chem 54(1):342–353. doi:10.1021/jm1012165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Di Liberto V, Bonomo A, Frinchi M, Belluardo N, Mudo G (2010) Group II metabotropic glutamate receptor activation by agonist LY379268 treatment increases the expression of brain derived neurotrophic factor in the mouse brain. Neuroscience 165(3):863–873. doi:10.1016/j.neuroscience.2009.11.012

    PubMed  Google Scholar 

  • Dupre KB, Ostock CY, Eskow Jaunarajs KL, Button T, Savage LM, Wolf W, Bishop C (2011) Local modulation of striatal glutamate efflux by serotonin 1A receptor stimulation in dyskinetic, hemiparkinsonian rats. Exp Neurol 229(2):288–299. doi:10.1016/j.expneurol.2011.02.012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duty S (2010) Therapeutic potential of targeting group III metabotropic glutamate receptors in the treatment of Parkinson’s disease. Br J Pharmacol 161(2):271–287. doi:10.1111/j.1476-5381.2010.00882.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duty S, Jenner P (2011) Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 164(4):1357–1391. doi:10.1111/j.1476-5381.2011.01426.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eggert K, Squillacote D, Barone P, Dodel R, Katzenschlager R, Emre M, Lees AJ, Rascol O, Poewe W, Tolosa E, Trenkwalder C, Onofrj M, Stocchi F, Nappi G, Kostic V, Potic J, Ruzicka E, Oertel W (2010) Safety and efficacy of perampanel in advanced Parkinson’s disease: a randomized, placebo-controlled study. Mov Disord 25(7):896–905. doi:10.1002/mds.22974

    PubMed  Google Scholar 

  • Emre M, Tsolaki M, Bonuccelli U, Destée A, Tolosa E, Kutzelnigg A, Ceballos-Baumann A, Zdravkovic S, Bladström A, Jones R (2010) Memantine for patients with Parkinson’s disease dementia or dementia with Lewy bodies: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 9:969–977. doi:10.1016/S1474-4422(10)70194-0

    CAS  PubMed  Google Scholar 

  • Fahn S, Cohen G (1992) The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol 32(6):804–812. doi:10.1002/ana.410320616

    CAS  PubMed  Google Scholar 

  • Fasano A, Ricciardi L, Pettorruso M, Bentivoglio AR (2011) Management of punding in Parkinson’s disease: an open-label prospective study. J Neurol 258(4):656–660. doi:10.1007/s00415-010-5817-8

    CAS  PubMed  Google Scholar 

  • Fell MJ, Witkin JM, Falcone JF, Katner JS, Perry KW, Hart J, Rorick-Kehn L, Overshiner CD, Rasmussen K, Chaney SF, Benvenga MJ, Li X, Marlow DL, Thompson LK, Luecke SK, Wafford KA, Seidel WF, Edgar DM, Quets AT, Felder CC, Wang X, Heinz BA, Nikolayev A, Kuo MS, Mayhugh D, Khilevich A, Zhang D, Ebert PJ, Eckstein JA, Ackermann BL, Swanson SP, Catlow JT, Dean RA, Jackson K, Tauscher-Wisniewski S, Marek GJ, Schkeryantz JM, Svensson KA (2011) N-(4-((2-(trifluoromethyl)-3-hydroxy-4-(isobutyryl)phenoxy)methyl)benzyl)-1-methy l-1H-imidazole-4-carboxamide (THIIC), a novel metabotropic glutamate 2 potentiator with potential anxiolytic/antidepressant properties: in vivo profiling suggests a link between behavioral and central nervous system neurochemical changes. J Pharmacol Exp Ther 336(1):165–177. doi:10.1124/jpet.110.172957

    CAS  PubMed  Google Scholar 

  • Felts AS, Rodriguez AL, Morrison RD, Venable DF, Manka JT, Bates BS, Blobaum AL, Byers FW, Daniels JS, Niswender CM, Jones CK, Conn PJ, Lindsley CW, Emmitte KA (2013) Discovery of VU0409106: a negative allosteric modulator of mGlu with activity in a mouse model of anxiety. Bioorg Med Chem Lett. doi:10.1016/j.bmcl.2013.09.001

    PubMed Central  Google Scholar 

  • Galici R, Jones CK, Hemstapat K, Nong Y, Echemendia NG, Williams LC, de Paulis T, Conn PJ (2006) Biphenyl-indanone A, a positive allosteric modulator of the metabotropic glutamate receptor subtype 2, has antipsychotic- and anxiolytic-like effects in mice. J Pharmacol Exp Ther 318(1):173–185. doi:10.1124/jpet.106.102046

    CAS  PubMed  Google Scholar 

  • Gardoni F, Picconi B, Ghiglieri V, Polli F, Bagetta V, Bernardi G, Cattabeni F, Di Luca M, Calabresi P (2006) A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia. J Neurosci 26(11):2914–2922. doi:10.1523/jneurosci.5326-05.2006

    CAS  PubMed  Google Scholar 

  • Gardoni F, Sgobio C, Pendolino V, Calabresi P, Di Luca M, Picconi B (2012) Targeting NR2A-containing NMDA receptors reduces L-DOPA-induced dyskinesias. Neurobiol Aging 33(9):2138–2144. doi:10.1016/j.neurobiolaging.2011.06.019

    CAS  PubMed  Google Scholar 

  • Gerlach M, Gsell W, Kornhuber J, Jellinger K, Krieger V, Pantucek F, Vock R, Riederer P (1996) A post mortem study on neurochemical markers of dopaminergic, GABA-ergic and glutamatergic neurons in basal ganglia-thalamocortical circuits in Parkinson syndrome. Brain Res 741(1–2):142–152

    CAS  PubMed  Google Scholar 

  • Gomez-Mancilla B, Bedard PJ (1993) Effect of nondopaminergic drugs on L-DOPA-induced dyskinesias in MPTP-treated monkeys. Clin Neuropharmacol 16(5):418–427

    CAS  PubMed  Google Scholar 

  • Goudet C, Chapuy E, Alloui A, Acher F, Pin JP, Eschalier A (2008) Group III metabotropic glutamate receptors inhibit hyperalgesia in animal models of inflammation and neuropathic pain. Pain 137(1):112–124. doi:10.1016/j.pain.2007.08.020

    CAS  PubMed  Google Scholar 

  • Graham WC, Robertson RG, Sambrook MA, Crossman AR (1990) Injection of excitatory amino acid antagonists into the medial pallidal segment of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated primate reverses motor symptoms of Parkinsonism. Life Sci 47:PL-91-PL97

    Google Scholar 

  • Gravius A, Dekundy A, Nagel J, More L, Pietraszek M, Danysz W (2008) Investigation on tolerance development to subchronic blockade of mGluR5 in models of learning, anxiety, and levodopa-induced dyskinesia in rats. J Neural Transm 115(12):1609–1619. doi:10.1007/s00702-008-0098-4

    CAS  PubMed  Google Scholar 

  • Greco B, Lopez S, van der Putten H, Flor PJ, Amalric M (2010) Metabotropic glutamate 7 receptor subtype modulates motor symptoms in rodent models of Parkinson’s disease. J Pharmacol Exp Ther 332(3):1064–1071. doi:10.1124/jpet.109.162115

    CAS  PubMed  Google Scholar 

  • Gregoire L, Morin N, Ouattara B, Gasparini F, Bilbe G, Johns D, Vranesic I, Sahasranaman S, Gomez-Mancilla B, Di Paolo T (2011) The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist. L-DOPA-treated parkinsonian monkeys. Parkinsonism Relat Disord 17(4):270–276. doi:10.1016/j.parkreldis.2011.01.008

    Google Scholar 

  • Hallett PJ, Dunah AW, Ravenscroft P, Zhou S, Bezard E, Crossman AR, Brotchie JM, Standaert DG (2005) Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology 48(4):503–516. doi:10.1016/j.neuropharm.2004.11.008

    CAS  PubMed  Google Scholar 

  • Hametner E, Seppi K, Poewe W (2010) The clinical spectrum of levodopa-induced motor complications. J Neurol 257(Suppl 2):S268–S275. doi:10.1007/s00415-010-5719-9

    CAS  PubMed  Google Scholar 

  • Hanagasi HA, Kaptanoglu G, Sahin HA, Emre M (2000) The use of NMDA antagonist memantine in drug-resistant dyskinesias resulting from L-DOPA. Mov Disord 15(5):1016–1017

    CAS  PubMed  Google Scholar 

  • Helton DR, Tizzano JP, Monn JA, Schoepp DD, Kallman MJ (1998) Anxiolytic and side-effect profile of LY354740: a potent, highly selective, orally active agonist for group II metabotropic glutamate receptors. J Pharmacol Exp Ther 284(2):651–660

    CAS  PubMed  Google Scholar 

  • Helton TD, Otsuka T, Lee MC, Mu Y, Ehlers MD (2008) Pruning and loss of excitatory synapses by the parkin ubiquitin ligase. Proc Natl Acad Sci USA 105(49):19492–19497. doi:10.1073/pnas.0802280105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirsch EC, Perier C, Orieux G, Francois C, Feger J, Yelnik J, Vila M, Levy R, Tolosa ES, Marin C, Trinidad Herrero M, Obeso JA, Agid Y (2000) Metabolic effects of nigrostriatal denervation in basal ganglia. Trends Neurosci 23(10 Suppl):S78–S85

    CAS  PubMed  Google Scholar 

  • Ho YJ, Ho SC, Pawlak CR, Yeh KY (2011) Effects of d-cycloserine on MPTP-induced behavioral and neurological changes: potential for treatment of Parkinson’s disease dementia. Behav Brain Res 219(2):280–290. doi:10.1016/j.bbr.2011.01.028

    CAS  PubMed  Google Scholar 

  • Hölscher C, McGlinchey L, Rowan MJ (1996) L-AP4 (L-(+)-2-amino-4-phosphonobutyric acid) induced impairment of spatial learning in the rat is antagonized by MAP4 ((S)-2-amino-2-methyl-4-phosphonobutanoic acid). Behav Brain Res 81(1–2):69–79

    PubMed  Google Scholar 

  • Hsieh M-H, Ho S-C, Yeh K-Y, Pawlak CR, Chang H-M, Ho Y-J, Lai T-J, Wu F-Y (2012a) Blockade of metabotropic glutamate receptors inhibits cognition and neurodegeneration in an MPTP-induced Parkinson’s disease rat model. Pharmacol Biochem Behav 102(1):64–71. doi:10.1016/j.pbb.2012.03.022

    CAS  PubMed  Google Scholar 

  • Hsieh MH, Ho SC, Yeh KY, Pawlak CR, Chang HM, Ho YJ, Lai TJ, Wu FY (2012b) Blockade of metabotropic glutamate receptors inhibits cognition and neurodegeneration in an MPTP-induced Parkinson’s disease rat model. Pharmacology, Biochemistry and Behaviour 102(1):64–71. doi:10.1016/j.pbb.2012.03.022

    CAS  Google Scholar 

  • Huge V, Lauchart M, Magerl W, Schelling G, Beyer A, Thieme D, Azad SC (2010) Effects of low-dose intranasal (S)-ketamine in patients with neuropathic pain. Eur J Pain 14(4):387–394. doi:10.1016/j.ejpain.2009.08.002

    CAS  PubMed  Google Scholar 

  • Hurley MJ, Jackson MJ, Smith LA, Rose S, Jenner P (2005) Immunoautoradiographic analysis of NMDA receptor subunits and associated postsynaptic density proteins in the brain of dyskinetic MPTP-treated common marmosets. Eur J Neurosci 21(12):3240–3250. doi:10.1111/j.1460-9568.2005.04169.x

    CAS  PubMed  Google Scholar 

  • Iravani MM, McCreary AC, Jenner P (2012) Striatal plasticity in Parkinson’s disease and L-DOPA induced dyskinesia. Parkinsonism Relat Disord 18(Suppl 1):S123–S125. doi:10.1016/s1353-8020(11)70038-4

    PubMed  Google Scholar 

  • Isaacson SH, Hauser RA (2009) Improving symptom control in early Parkinson’s disease. Ther Adv Neurol Disord 2(6):29–41. doi:10.1177/1756285609339383

    PubMed Central  PubMed  Google Scholar 

  • Jenner P (2008) Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci 9(9):665–677. doi:10.1038/nrn2471

    CAS  PubMed  Google Scholar 

  • Jensen J, Lehmann A, Uvebrant A, Carlsson A, Jerndal G, Nilsson K, Frisby C, Blackshaw LA, Mattsson JP (2005) Transient lower esophageal sphincter relaxations in dogs are inhibited by a metabotropic glutamate receptor 5 antagonist. Eur J Pharmacol 519(1–2):154–157. doi:10.1016/j.ejphar.2005.07.007

    CAS  PubMed  Google Scholar 

  • Jimenez-Jimenez FJ, Molina JA, Vargas C, Gomez P, Navarro JA, Benito-Leon J, Orti-Pareja M, Gasalla T, Cisneros E, Arenas J (1996) Neurotransmitter amino acids in cerebrospinal fluid of patients with Parkinson’s disease. J Neurol Sci 141(1–2):39–44

    CAS  PubMed  Google Scholar 

  • Johnson KA, Jones CK, Tantawy MN, Bubser M, Marvanova M, Ansari MS, Baldwin RM, Conn PJ, Niswender CM (2013) The metabotropic glutamate receptor 8 agonist (S)-3,4-DCPG reverses motor deficits in prolonged but not acute models of Parkinson’s disease. Neuropharmacology 66:187–195. doi:10.1016/j.neuropharm.2012.03.029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnston TH, Fox SH, McIldowie MJ, Piggott MJ, Brotchie JM (2010) Reduction of L-DOPA-induced dyskinesia by the selective metabotropic glutamate receptor 5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Pharmacol Exp Ther 333(3):865–873. doi:10.1124/jpet.110.166629

    CAS  PubMed  Google Scholar 

  • Jones CK, Engers DW, Thompson AD, Field JR, Blobaum AL, Lindsley SR, Zhou Y, Gogliotti RD, Jadhav S, Zamorano R, Bogenpohl J, Smith Y, Morrison R, Daniels JS, Weaver CD, Conn PJ, Lindsley CW, Niswender CM, Hopkins CR (2011) Discovery, synthesis, and structure-activity relationship development of a series of N-4-(2,5-dioxopyrrolidin-1-yl)phenylpicolinamides (VU0400195, ML182): characterization of a novel positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu(4)) with oral efficacy in an antiparkinsonian animal model. J Med Chem 54(21):7639–7647. doi:10.1021/jm200956q

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones CK, Bubser M, Thompson AD, Dickerson JW, Turle-Lorenzo N, Amalric M, Blobaum AL, Bridges TM, Morrison RD, Jadhav S, Engers DW, Italiano K, Bode J, Daniels JS, Lindsley CW, Hopkins CR, Conn PJ, Niswender CM (2012) The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine 2A antagonist in preclinical rodent models of Parkinson’s disease. J Pharmacol Exp Ther 340(2):404–421. doi:10.1124/jpet.111.187443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanthasamy AG, Kanthasamy A, Matsumoto RR, Vu TQ, Truong DD (1997) Neuroprotective effects of the strychnine-insensitive glycine site NMDA antagonist (R)-HA-966 in an experimental model of Parkinson’s disease. Brain Res 759(1):1–8

    CAS  PubMed  Google Scholar 

  • Kawamata M, Omote K (1997) Involvement of increased excitatory amino acids and intracellular Ca2+ concentration in the spinal dorsal horn in an animal model of neuropathic pain. Pain 68:85–96

    Google Scholar 

  • Keywood C, Wakefield M, Tack J (2009) A proof-of-concept study evaluating the effect of ADX10059, a metabotropic glutamate receptor-5 negative allosteric modulator, on acid exposure and symptoms in gastro-oesophageal reflux disease. Gut 58(9):1192–1199. doi:10.1136/gut.2008.162040

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klockgether T, Turski L (1990) NMDA antagonists potentiate antiparkinsonian actions of L-DOPA in monoamine-depleted rats. Ann Neurol 28:539–546

    CAS  PubMed  Google Scholar 

  • Klockgether T, Turski L, Honore T, Zhang ZM, Gash DM, Kurlan R, Greenamyre JT (1991) The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys. Ann Neurol 30(5):717–723. doi:10.1002/ana.410300513

    CAS  PubMed  Google Scholar 

  • Kobylecki C, Cenci MA, Crossman AR, Ravenscroft P (2010) Calcium-permeable AMPA receptors are involved in the induction and expression of l-DOPA-induced dyskinesia in Parkinson’s disease. J Neurochem 114(2):499–511. doi:10.1111/j.1471-4159.2010.06776.x

    CAS  PubMed  Google Scholar 

  • Kobylecki C, Crossman AR, Ravenscroft P (2013) Alternative splicing of AMPA receptor subunits in the 6-OHDA-lesioned rat model of Parkinson’s disease and L-DOPA-induced dyskinesia. Exp Neurol 247:476–484. doi:10.1016/j.expneurol.2013.01.019

    CAS  PubMed  Google Scholar 

  • Konieczny J, Wardas J, Kuter K, Pilc A, Ossowska K (2007) The influence of group III metabotropic glutamate receptor stimulation by (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid on the parkinsonian-like akinesia and striatal proenkephalin and prodynorphin mRNA expression in rats. Neuroscience 145(2):611–620. doi:10.1016/j.neuroscience.2006.12.006

    CAS  PubMed  Google Scholar 

  • Konitsiotis S, Blanchet PJ, Verhagen L, Lamers E, Chase TN (2000) AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology 54(8):1589–1595

    CAS  PubMed  Google Scholar 

  • Kuiper MA, Teerlink T, Visser JJ, Bergmans PL, Scheltens P, Wolters EC (2000) L-glutamate, l-arginine and L-citrulline levels in cerebrospinal fluid of Parkinson’s disease, multiple system atrophy, and Alzheimer’s disease patients. J Neural Transm 107(2):183–189

    CAS  PubMed  Google Scholar 

  • Kumar R, Hauser RA, Mostillo J, Dronamraju N, Graf A, Merschhemke M, Kenney C (2013) Mavoglurant (AFQ056) in combination with increased levodopa dosages in Parkinson’s disease patients. Int J Neurosci. doi:10.3109/00207454.2013.841685

    Google Scholar 

  • Kupsch A, Loschmann PA, Sauer H, Arnold G, Renner P, Pufal D, Burg M, Wachtel H, ten Bruggencate G, Oertel WH (1992) Do NMDA receptor antagonists protect against MPTP-toxicity? Biochemical and immunocytochemical analyses in black mice. Brain Res 592(1–2):74–83

    CAS  PubMed  Google Scholar 

  • Lange KW, Loschmann PA, Sofic E, Burg M, Horowski R, Kalveram KT, Wachtel H, Riederer P (1993) The competitive NMDA antagonist CPP protects substantia nigra neurons from MPTP-induced degeneration in primates. Naunyn-Schmiedeberg’s Arch Pharmacol 348(6):586–592

    CAS  Google Scholar 

  • Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460(2):525–542. doi:10.1007/s00424-010-0809-1

    CAS  PubMed  Google Scholar 

  • Lavreysen H, Langlois X, Ahnaou A, Drinkenburg W, te Riele P, Biesmans I, Van der Linden I, Peeters L, Megens A, Wintmolders C, Cid JM, Trabanco AA, Andres JI, Dautzenberg FM, Lutjens R, Macdonald G, Atack JR (2013) Pharmacological characterization of JNJ-40068782, a new potent, selective, and systemically active positive allosteric modulator of the mGlu2 receptor and its radioligand [3H]JNJ-40068782. J Pharmacol Exp Ther 346(3):514–527. doi:10.1124/jpet.113.204990

    CAS  PubMed  Google Scholar 

  • Leaver KR, Allbutt HN, Creber NJ, Kassiou M, Henderson JM (2008) Neuroprotective effects of a selective N-methyl-d-aspartate NR2B receptor antagonist in the 6-hydroxydopamine rat model of Parkinson’s disease. Clin Exp Pharmacol Physiol 35(11):1388–1394. doi:10.1111/j.1440-1681.2008.05046.x

    CAS  PubMed  Google Scholar 

  • Lee MC, Ting KK, Adams S, Brew BJ, Chung R, Guillemin GJ (2010) Characterisation of the expression of NMDA receptors in human astrocytes. PLoS ONE 5(11):e14123. doi:10.1371/journal.pone.0014123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lees A, Fahn S, Eggert KM, Jankovic J, Lang A, Micheli F, Mouradian MM, Oertel WH, Olanow CW, Poewe W, Rascol O, Tolosa E, Squillacote D, Kumar D (2012) Perampanel, an AMPA antagonist, found to have no benefit in reducing “off” time in Parkinson’s disease. Mov Disord 27(2):284–288. doi:10.1002/mds.23983

    CAS  PubMed  Google Scholar 

  • Lehmann A, Brandén L (2001) Effects of antagonism of NMDA receptors on transient lower esophageal sphincter relaxations in the dog. Eur J Pharmacol 431:253–258

    CAS  PubMed  Google Scholar 

  • Levandis G, Bazzini E, Armentero MT, Nappi G, Blandini F (2008) Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts L-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neurobiol Dis 29(1):161–168. doi:10.1016/j.nbd.2007.08.011

    CAS  PubMed  Google Scholar 

  • Lindelof K, Bendtsen L (2009) Memantine for prophylaxis of chronic tension-type headache–a double-blind, randomized, crossover clinical trial. Cephalalgia : an international journal of headache 29(3):314–321. doi:10.1111/j.1468-2982.2008.01720.x

    CAS  Google Scholar 

  • Litvinenko IV, Odinak MM, Mogil’naya VI, Perstnev SV (2010) Use of memantine (akatinol) for the correction of cognitive impairments in Parkinson’s disease complicated by dementia. Neurosci Behav Physiol 40(2):149–155

    CAS  PubMed  Google Scholar 

  • Lopez S, Turle-Lorenzo N, Acher F, De Leonibus E, Mele A, Amalric M (2007) Targeting group III metabotropic glutamate receptors produces complex behavioral effects in rodent models of Parkinson’s disease. J Neurosci 27(25):6701–6711. doi:10.1523/jneurosci.0299-07.2007

    CAS  PubMed  Google Scholar 

  • Lopez S, Turle-Lorenzo N, Johnston TH, Brotchie JM, Schann S, Neuville P, Amalric M (2008) Functional interaction between adenosine A2A and group III metabotropic glutamate receptors to reduce parkinsonian symptoms in rats. Neuropharmacology 55(4):483–490. doi:10.1016/j.neuropharm.2008.06.038

    CAS  PubMed  Google Scholar 

  • Lopez S, Bonito-Oliva A, Pallottino S, Acher F, Fisone G (2011) Activation of metabotropic glutamate 4 receptors decreases L-DOPA-induced dyskinesia in a mouse model of Parkinson’s disease. J Parkinsons Dis 1(4):339–346. doi:10.3233/jpd-2011-11066

    CAS  PubMed  Google Scholar 

  • Loschmann PA, Lange KW, Kunow M, Rettig KJ, Jahnig P, Honore T, Turski L, Wachtel H, Jenner P, Marsden CD (1991) Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPP with L-DOPA in models of Parkinson’s disease. J Neural Transm 3(3):203–213

    CAS  Google Scholar 

  • Loschmann PA, De Groote C, Smith L, Wullner U, Fischer G, Kemp JA, Jenner P, Klockgether T (2004) Antiparkinsonian activity of Ro 25-6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson’s disease. Exp Neurol 187(1):86–93. doi:10.1016/j.expneurol.2004.01.018

    CAS  PubMed  Google Scholar 

  • Lucking CB, Durr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi BS, Meco G, Denefle P, Wood NW, Agid Y, Brice A (2000) Association between early-onset Parkinson’s disease and mutations in the parkin gene. New Engl J Med 342(21):1560–1567. doi:10.1056/nejm200005253422103

    CAS  PubMed  Google Scholar 

  • Luginger E, Wenning GK, Bosch S, Poewe W (2000) Beneficial effects of amantadine on L-DOPA-induced dyskinesias in Parkinson’s disease. Mov Disord 15(5):873–878

    CAS  PubMed  Google Scholar 

  • Luquin MR, Obeso JA, Laguna J, Guillen J, Martinez-Lage JM (1993) The AMPA receptor antagonist NBQX does not alter the motor response induced by selective dopamine agonists in MPTP-treated monkeys. Eur J Pharmacol 235(2–3):297–300

    CAS  PubMed  Google Scholar 

  • MacInnes N, Messenger MJ, Duty S (2004) Activation of group III metabotropic glutamate receptors in selected regions of the basal ganglia alleviates akinesia in the reserpine-treated rat. Br J Pharmacol 141(1):15–22. doi:10.1038/sj.bjp.0705566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda S, Kawamoto A, Yatani Y, Shirakawa H, Nakagawa T, Kaneko S (2008) Gene transfer of GLT-1, a glial glutamate transporter, into the spinal cord by recombinant adenovirus attenuates inflammatory and neuropathic pain in rats. Mol Pain 4:65. doi:10.1186/1744-8069-4-65

    PubMed Central  PubMed  Google Scholar 

  • Makaroff L, Gunn A, Gervasoni C, Richy F (2011) Gastrointestinal disorders in Parkinson’s disease: prevalence and health outcomes in a US claims database. J Parkinsons Dis 1(1):65–74. doi:10.3233/JPD-2011-001

    PubMed  Google Scholar 

  • Mao J, Price DD, Hayes RL, Lu J, Mayer DJ, Frenk H (1993) Intrathecal treatment with dextrorphan or ketamine potently reduces pain-related behaviors in a rat model of peripheral mononeuropathy. Brain Res 605:164–168

    CAS  PubMed  Google Scholar 

  • Maranis S, Stamatis D, Tsironis C, Konitsiotis S (2012) Investigation of the antidyskinetic site of action of metabotropic and ionotropic glutamate receptor antagonists. Intracerebral infusions in 6-hydroxydopamine-lesioned rats with levodopa-induced dyskinesia. Eur J Pharmacol 683(1–3):71–77. doi:10.1016/j.ejphar.2012.02.036

    CAS  PubMed  Google Scholar 

  • Marino MJ, Williams DL Jr, O’Brien JA, Valenti O, McDonald TP, Clements MK, Wang R, DiLella AG, Hess JF, Kinney GG, Conn PJ (2003) Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson’s disease treatment. Proc Natl Acad Sci USA 100(23):13668–13673. doi:10.1073/pnas.1835724100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marsden CD, Parkes JD (1997) Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet 1(8007):345–349

    Google Scholar 

  • Martinez-Coria H, Green KN, Billings LM, Kitazawa M, Albrecht M, Rammes G, Parsons CG, Gupta S, Banerjee P, LaFerla FM (2010) Memantine improves cognition and reduces Alzheimer’s-like neuropathology in transgenic mice. Am J Pathol 176(2):870–880. doi:10.2353/ajpath.2010.090452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masilamoni GJ, Bogenpohl JW, Alagille D, Delevich K, Tamagnan G, Votaw JR, Wichmann T, Smith Y (2011) Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain 134(Pt 7):2057–2073. doi:10.1093/brain/awr137

    PubMed Central  PubMed  Google Scholar 

  • Masuoka T, Mikami A, Kamei C (2010) Ameliorative effect of a hippocampal metabotropic glutamate receptor agonist on Histamine H1 receptor antagonist–induced memory deficit in rats. Journal of pharmacological sciences 113(1):41–47. doi:10.1254/jphs.10022FP

    CAS  PubMed  Google Scholar 

  • Matarredona ER, Santiago M, Venero JL, Cano J, Machado A (2001) Group II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP + -induced neurotoxicity along with brain-derived neurotrophic factor induction. J Neurochem 76(2):351–360

    CAS  PubMed  Google Scholar 

  • McCarthy DJ, Alexander R, Smith MA, Pathak S, Kanes S, Lee CM, Sanacora G (2012) Glutamate-based depression GBD. Med Hypotheses 78(5):675–681. doi:10.1016/j.mehy.2012.02.009

    CAS  PubMed  Google Scholar 

  • Medrik-Goldberg T, Lifschitz D, Pud D, Adler R, Eisenberg E (1999) Intravenous lidocaine, amantadine and placebo in the treatment of sciatica: a double-blind randomised controlled study. Reg Anesth Pain Med 24(6):534–540

    CAS  PubMed  Google Scholar 

  • Mela F, Marti M, Dekundy A, Danysz W, Morari M, Cenci MA (2007) Antagonism of metabotropic glutamate receptor type 5 attenuates L-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson’s disease. J Neurochem 101(2):483–497. doi:10.1111/j.1471-4159.2007.04456.x

    CAS  PubMed  Google Scholar 

  • Merello M, Nouzeilles MI, Cammarota A, Leiguarda R (1999) Effect of memantine (NMDA antagonist) on Parkinson’s disease: a double-blind crossover randomized study. Clin Neuropharmacol 22(5):273–276

    CAS  PubMed  Google Scholar 

  • Messenger MJ, Dawson LG, Duty S (2002) Changes in metabotropic glutamate receptor 1-8 gene expression in the rodent basal ganglia motor loop following lesion of the nigrostriatal tract. Neuropharmacology 43(2):261–271

    CAS  PubMed  Google Scholar 

  • Moreau C, Delval A, Tiffreau V, Defebvre L, Dujardin K, Duhamel A, Petyt G, Hossein-Foucher C, Blum D, Sablonniere B, Schraen S, Allorge D, Destee A, Bordet R, Devos D (2013) Memantine for axial signs in Parkinson’s disease: a randomised, double-blind, placebo-controlled pilot study. J Neurol Neurosurg Psychiatry 84(5):552–555. doi:10.1136/jnnp-2012-303182

    PubMed Central  PubMed  Google Scholar 

  • Morel V, Etienne M, Wattiez A-S, Dupuis A, Privat A-M, Chalus M, Eschalier A, Daulhac L, Pickering G (2013) Memantine, a promising drug for the prevention o fneuropathic pain in rat. Eur J Pharmacol. doi:10.1016/j.ejphar.2013.06.020i. (Epub ahead of print)

  • Morin N, Gregoire L, Gomez-Mancilla B, Gasparini F, Di Paolo T (2010) Effect of the metabotropic glutamate receptor type 5 antagonists MPEP and MTEP in parkinsonian monkeys. Neuropharmacology 58(7):981–986. doi:10.1016/j.neuropharm.2009.12.024

    CAS  PubMed  Google Scholar 

  • Morin N, Grégoire L, Morissette M, Desrayaud S, Gomez-Mancilla B, Gasparini F, Di Paolo T (2013a) MPEP, an mGlu5 receptor antagonist, reduces the development of L-DOPA-induced motor complications in de novo parkinsonian monkeys: biochemical correlates. Neuropharmacology 66:355–364. doi:10.1016/j.neuropharm.2012.07.036

    CAS  PubMed  Google Scholar 

  • Morin N, Morissette M, Gregoire L, Gomez-Mancilla B, Gasparini F, Di Paolo T (2013b) Chronic treatment with MPEP, an mGlu5 receptor antagonist, normalizes basal ganglia glutamate neurotransmission in L-DOPA-treated parkinsonian monkeys. Neuropharmacology 73C:216–231. doi:10.1016/j.neuropharm.2013.05.028

    Google Scholar 

  • Morissette M, Dridi M, Calon F, Hadj Tahar A, Meltzer LT, Bedard PJ, Di Paolo T (2006) Prevention of levodopa-induced dyskinesias by a selective NR1A/2B N-methyl-d-aspartate receptor antagonist in parkinsonian monkeys: implication of preproenkephalin. Mov Disord 21(1):9–17. doi:10.1002/mds.20654

    PubMed  Google Scholar 

  • Murray TK, Messenger MJ, Ward MA, Woodhouse S, Osborne DJ, Duty S, O’Neill MJ (2002) Evaluation of the mGluR2/3 agonist LY379268 in rodent models of Parkinson’s disease. Pharmacol Biochem Behav 73(2):455–466

    CAS  PubMed  Google Scholar 

  • Murray TK, Whalley K, Robinson CS, Ward MA, Hicks CA, Lodge D, Vandergriff JL, Baumbarger P, Siuda E, Gates M, Ogden AM, Skolnick P, Zimmerman DM, Nisenbaum ES, Bleakman D, O’Neill MJ (2003) LY503430, a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor potentiator with functional, neuroprotective and neurotrophic effects in rodent models of Parkinson’s disease. J Pharmacol Exp Ther 306(2):752–762. doi:10.1124/jpet.103.049445

    CAS  PubMed  Google Scholar 

  • Musazzi L, Treccani G, Mallei A, Popoli M (2013) The action of antidepressants on the glutamate system: regulation of glutamate release and glutamate receptors. Biol Psychiatry 73(12):1180–1188. doi:10.1016/j.biopsych.2012.11.009

    CAS  PubMed  Google Scholar 

  • Nash JE, Hill MP, Brotchie JM (1999) Antiparkinsonian actions of blockade of NR2B-containing NMDA receptors in the reserpine-treated rat. Exp Neurol 155(1):42–48. doi:10.1006/exnr.1998.6963

    CAS  PubMed  Google Scholar 

  • Nash JE, Fox SH, Henry B, Hill MP, Peggs D, McGuire S, Maneuf Y, Hille C, Brotchie JM, Crossman AR (2000) Antiparkinsonian actions of ifenprodil in the MPTP-lesioned marmoset model of Parkinson’s disease. Exp Neurol 165(1):136–142. doi:10.1006/exnr.2000.7444

    CAS  PubMed  Google Scholar 

  • Nash JE, Ravenscroft P, McGuire S, Crossman AR, Menniti FS, Brotchie JM (2004) The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates L-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of L-DOPA in the MPTP-lesioned marmoset model of Parkinson’s disease. Exp Neurol 188(2):471–479. doi:10.1016/j.expneurol.2004.05.004

    CAS  PubMed  Google Scholar 

  • Nie H, Weng HR (2010) Impaired glial glutamate uptake induces extrasynaptic glutamate spillover in the spinal sensory synapses of neuropathic rats. J Neurophysiol 103(5):2570–2580. doi:10.1152/jn.00013.2010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishijima H, Arai A, Kimura T, Mori F, Yamada J, Migita K, Wakabayashi K, Baba M, Ueno S, Tomiyama M (2013) Drebrin immunoreactivity in the striatum of a rat model of levodopa-induced dyskinesia. Neuropathology 33(4):391–396. doi:10.1111/neup.12009

    CAS  PubMed  Google Scholar 

  • Nutt JG, Gunzler SA, Kirchhoff T, Hogarth P, Weaver JL, Krams M, Jamerson B, Menniti FS, Landen JW (2008) Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov Disord 23(13):1860–1866. doi:10.1002/mds.22169

    PubMed Central  PubMed  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M (2008) Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 23(Suppl 3):S548–S559. doi:10.1002/mds.22062

    PubMed  Google Scholar 

  • Oh JD, Russell DS, Vaughan CL, Chase TN (1998) Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and L-DOPA administration. Brain Res 813(1):150–159

    CAS  PubMed  Google Scholar 

  • Olanow CW (2007) The pathogenesis of cell death in Parkinson’s disease. Mov Disord 22(Suppl 17):S335–S342. doi:10.1002/mds.21675

    PubMed  Google Scholar 

  • Ondarza R, Velasco F, Velasco M, Aceves J, Flores G (1994) Neurotransmitter levels in cerebrospinal fluid in relation to severity of symptoms and response to medical therapy in Parkinson’s disease. Stereotact Funct Neurosurg 62(1–4):90–97

    CAS  PubMed  Google Scholar 

  • O’Neill MJ, Murray TK, Whalley K, Ward MA, Hicks CA, Woodhouse S, Osborne DJ, Skolnick P (2004) Neurotrophic actions of the novel AMPA receptor potentiator, LY404187, in rodent models of Parkinson’s disease. Eur J Pharmacol 486(2):163–174. doi:10.1016/j.ejphar.2003.12.023

    PubMed  Google Scholar 

  • Ossola B, Schendzielorz N, Chen SH, Bird GS, Tuominen RK, Mannisto PT, Hong JS (2011) Amantadine protects dopamine neurons by a dual action: reducing activation of microglia and inducing expression of GDNF in astroglia [corrected]. Neuropharmacology 61(4):574–582. doi:10.1016/j.neuropharm.2011.04.030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ossowska K, Konieczny J, Wolfarth S, Wieronska J, Pilc A (2001) Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian-like effects in rats. Neuropharmacology 41(4):413–420

    CAS  PubMed  Google Scholar 

  • Ouattara B, Hoyer D, Gregoire L, Morissette M, Gasparini F, Gomez-Mancilla B, Di Paolo T (2010) Changes of AMPA receptors in MPTP monkeys with levodopa-induced dyskinesias. Neuroscience 167(4):1160–1167. doi:10.1016/j.neuroscience.2010.03.022

    CAS  PubMed  Google Scholar 

  • Ouattara B, Gregoire L, Morissette M, Gasparini F, Vranesic I, Bilbe G, Johns DR, Rajput A, Hornykiewicz O, Rajput AH, Gomez-Mancilla B, Di Paolo T (2011) Metabotropic glutamate receptor type 5 in levodopa-induced motor complications. Neurobiol Aging 32(7):1286–1295. doi:10.1016/j.neurobiolaging.2009.07.014

    CAS  PubMed  Google Scholar 

  • Palucha A, Klak K, Branski P, van der Putten H, Flor PJ, Pilc A (2007) Activation of the mGlu7 receptor elicits antidepressant-like effects in mice. Psychopharmacology 194(4):555–562. doi:10.1007/s00213-007-0856-2

    CAS  PubMed  Google Scholar 

  • Papa SM, Boldry RC, Engber TM, Kask AM, Chase TN (1995) Reversal of levodopa-induced motor fluctuations in experimental parkinsonism by NMDA receptor blockade. Brain Res 701(1–2):13–18

    CAS  PubMed  Google Scholar 

  • Paquette MA, Anderson AM, Lewis JR, Meshul CK, Johnson SW, Paul Berger S (2010) MK-801 inhibits L-DOPA-induced abnormal involuntary movements only at doses that worsen parkinsonism. Neuropharmacology 58(7):1002–1008. doi:10.1016/j.neuropharm.2010.01.003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Partosoedarso ER, Blackshaw LA (2000) Roles of central glutamate, acetylcholine and CGRP receptors in gastrointestinal afferent inputs to vagal preganglionic neurones. Auton Neurosci Basic Clin 83:37–48

    CAS  Google Scholar 

  • Pawlak CR, Chen FS, Wu FY, Ho YJ (2012) Potential of d-cycloserine in the treatment of behavioral and neuroinflammatory disorders in Parkinson’s disease and studies that need to be performed before clinical trials. Kaohsiung J Med Sci 28(8):407–417. doi:10.1016/j.kjms.2012.02.010

    CAS  PubMed  Google Scholar 

  • Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW (2008) An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-d-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol 28(6):631–637. doi:10.1097/JCP.0b013e31818a6cea

    CAS  PubMed  Google Scholar 

  • Pud D, Eisenberg E, Spitzer A, Adler R, Fried G, Yarnitsky D (1998) The NMDA receptor antagonist amantadine reduces surgical neuropathic pain in cancer patients: a double blind, randomized, placebo controlled trial. Pain 75:349–354

    CAS  PubMed  Google Scholar 

  • Rascol O, Barone P, Behari M, Emre M, Giladi N, Olanow CW, Ruzicka E, Bibbiani F, Squillacote D, Patten A, Tolosa E (2012) Perampanel in Parkinson disease fluctuations: a double-blind randomized trial with placebo and Entacapone. Clin Neuropharmacol 35(1):15–20. doi:10.1097/WNF.0b013e318241520b

    CAS  PubMed  Google Scholar 

  • Reijnders JS, Ehrt U, Weber WE, Aarsland D, Leentjens AF (2008) A systematic review of prevalence studies of depression in Parkinson’s disease. Mov Disord 23(2):183–189; quiz 313. doi:10.1002/mds.21803

    Google Scholar 

  • Reisberg B, Doody R, Stöffler A, Schmitt F, Ferris S, Möbius HJ (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348:1333–1341

    CAS  PubMed  Google Scholar 

  • Richards G, Messer J, Malherbe P, Pink R, Brockhaus M, Stadler H, Wichmann J, Schaffhauser H, Mutel V (2005) Distribution and abundance of metabotropic glutamate receptor subtype 2 in rat brain revealed by [3H]LY354740 binding in vitro and quantitative radioautography: correlation with the sites of synthesis, expression, and agonist stimulation of [35S]GTPgammas binding. J Comp Neurol 487(1):15–27. doi:10.1002/cne.20538

    CAS  PubMed  Google Scholar 

  • Rinne JO, Halonen T, Riekkinen PJ, Rinne UK (1988) Free amino acids in the brain of patients with Parkinson’s disease. Neurosci Lett 94(1–2):182–186

    CAS  PubMed  Google Scholar 

  • Riquelme E, Abarca J, Campusano JM, Bustos G (2012) An NR2B-dependent decrease in the expression of trkB receptors precedes the disappearance of dopaminergic cells in substantia nigra in a rat model of presymptomatic Parkinson’s disease. Parkinsons Dis 2012:129605. doi:10.1155/2012/129605

    PubMed Central  PubMed  Google Scholar 

  • Rohof WO, Aronica E, Beaumont H, Troost D, Boeckxstaens GE (2012) Localization of mGluR5, GABAB, GABAA, and cannabinoid receptors on the vago-vagal reflex pathway responsible for transient lower esophageal sphincter relaxation in humans: an immunohistochemical study. Neurogastroenterol Motil 24(4):383–e173. doi:10.1111/j.1365-2982.2011.01868.x

    Google Scholar 

  • Rylander D, Recchia A, Mela F, Dekundy A, Danysz W, Cenci MA (2009) Pharmacological modulation of glutamate transmission in a rat model of L-DOPA-induced dyskinesia: effects on motor behavior and striatal nuclear signaling. J Pharmacol Exp Ther 330(1):227–235. doi:10.1124/jpet.108.150425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rylander D, Iderberg H, Li Q, Dekundy A, Zhang J, Li H, Baishen R, Danysz W, Bezard E, Cenci MA (2010) A mGluR5 antagonist under clinical development improves L-DOPA-induced dyskinesia in parkinsonian rats and monkeys. Neurobiol Dis 39(3):352–361. doi:10.1016/j.nbd.2010.05.001

    CAS  PubMed  Google Scholar 

  • Samadi P, Gregoire L, Morissette M, Calon F, Hadj Tahar A, Dridi M, Belanger N, Meltzer LT, Bedard PJ, Di Paolo T (2008) mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol Aging 29(7):1040–1051. doi:10.1016/j.neurobiolaging.2007.02.005

    CAS  PubMed  Google Scholar 

  • Santini E, Valjent E, Usiello A, Carta M, Borgkvist A, Girault JA, Herve D, Greengard P, Fisone G (2007) Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci 27(26):6995–7005. doi:10.1523/jneurosci.0852-07.2007

    CAS  PubMed  Google Scholar 

  • Santini E, Sgambato-Faure V, Li Q, Savasta M, Dovero S, Fisone G, Bezard E (2010) Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in L-DOPA-induced dyskinesia. PLoS ONE 5(8):e12322. doi:10.1371/journal.pone.0012322

    PubMed Central  PubMed  Google Scholar 

  • Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26(6):1049–1055. doi:10.1002/mds.23732

    PubMed  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54(3):823–827

    CAS  PubMed  Google Scholar 

  • Schmid S, Fendt M (2006) Effects of the mGluR8 agonist (S)-3,4-DCPG in the lateral amygdala on acquisition/expression of fear-potentiated startle, synaptic transmission, and plasticity. Neuropharmacology 50(2):154–164. doi:10.1016/j.neuropharm.2005.08.002

    CAS  PubMed  Google Scholar 

  • Schoepp DD, Wright RA, Levine LR, Gaydos B, Potter WZ (2003) LY354740, an mGlu2/3 receptor agonist as a novel approach to treat anxiety/stress. Stress 6(3):189–197. doi:10.1080/1025389031000146773

    CAS  PubMed  Google Scholar 

  • Schwartz TL, Siddiqui UA, Raza S (2012) Memantine as an augmentation therapy for anxiety disorders. Case Rep Psychiatry 2012:749796. doi:10.1155/2012/749796

    PubMed Central  PubMed  Google Scholar 

  • Sgambato-Faure V, Cenci MA (2012) Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson’s disease. Prog Neurobiol 96(1):69–86. doi:10.1016/j.pneurobio.2011.10.005

    CAS  PubMed  Google Scholar 

  • Silverdale MA, Nicholson SL, Crossman AR, Brotchie JM (2005) Topiramate reduces levodopa-induced dyskinesia in the MPTP-lesioned marmoset model of Parkinson’s disease. Mov Disord 20(4):403–409. doi:10.1002/mds.20345

    PubMed  Google Scholar 

  • Silverdale MA, Kobylecki C, Hallett PJ, Li Q, Dunah AW, Ravenscroft P, Bezard E, Brotchie JM (2010) Synaptic recruitment of AMPA glutamate receptor subunits in levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate. Synapse 64(2):177–180. doi:10.1002/syn.20739

    CAS  PubMed  Google Scholar 

  • Simmons RMA, Webster AA, Kalra AB, Iyengar S (2002) Group II mGluR receptor agonists are effective in persistent and neuropathic pain models in rats. Pharmacol Biochem Behav 73:419–427

    CAS  PubMed  Google Scholar 

  • Sivarao DV, Krowicki ZK, Abrahams TP, Hornby PJ (1999) Vagally-regulated gastric motor activity: evidence for kainate and NMDA receptor mediation. Eur J Pharmacol 368:173–182

    CAS  PubMed  Google Scholar 

  • Slawinska A, Wieronska JM, Stachowicz K, Palucha-Poniewiera A, Uberti MA, Bacolod MA, Doller D, Pilc A (2013) Anxiolytic- but not antidepressant-like activity of Lu AF21934, a novel, selective positive allosteric modulator of the mGlu(4) receptor. Neuropharmacology 66:225–235. doi:10.1016/j.neuropharm.2012.05.001

    CAS  PubMed  Google Scholar 

  • Sonsalla PK, Zeevalk GD, Manzino L, Giovanni A, Nicklas WJ (1992) MK-801 fails to protect against the dopaminergic neuropathology produced by systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice or intranigral 1-methyl-4-phenylpyridinium in rats. J Neurochem 58(5):1979–1982

    CAS  PubMed  Google Scholar 

  • Sophie M, Ford B (2012) Management of pain in Parkinson’s disease. CNS drugs 26(11):937–948. doi:10.1007/s40263-012-0005-2

    CAS  PubMed  Google Scholar 

  • Steece-Collier K, Chambers LK, Jaw-Tsai SS, Menniti FS, Greenamyre JT (2000) Antiparkinsonian actions of CP-101,606, an antagonist of NR2B subunit-containing N-methyl-d-aspartate receptors. Exp Neurol 163(1):239–243. doi:10.1006/exnr.2000.7374

    CAS  PubMed  Google Scholar 

  • Stocchi F, Rascol O, Destee A, Hattori N, Hauser RA, Lang AE, Poewe W, Stacy M, Tolosa E, Gao H, Nagel J, Merschhemke M, Graf A, Kenney C, Trenkwalder C (2013) AFQ056 in Parkinson patients with levodopa-induced dyskinesia: 13-week, randomized, dose-finding study. Mov Disord. doi:10.1002/mds.25561

    Google Scholar 

  • Sukoff Rizzo SJ, Leonard SK, Gilbert A, Dollings P, Smith DL, Zhang MY, Di L, Platt BJ, Neal S, Dwyer JM, Bender CN, Zhang J, Lock T, Kowal D, Kramer A, Randall A, Huselton C, Vishwanathan K, Tse SY, Butera J, Ring RH, Rosenzweig-Lipson S, Hughes ZA, Dunlop J (2011) The metabotropic glutamate receptor 7 allosteric modulator AMN082: a monoaminergic agent in disguise? J Pharmacol Exp Ther 338(1):345–352. doi:10.1124/jpet.110.177378

    PubMed  Google Scholar 

  • Suzuki R, Matthews EA, Dickenson AH (2001) Comparison of the effects of MK-801, ketamine and memantine on responses of spinal dorsal horn neurones in a rat model of mononeuropathy. Pain 91:101–109

    CAS  PubMed  Google Scholar 

  • Tamim MK, Samadi P, Morissette M, Gregoire L, Ouattara B, Levesque D, Rouillard C, Di Paolo T (2010) Effect of non-dopaminergic drug treatment on Levodopa induced dyskinesias in MPTP monkeys: common implication of striatal neuropeptides. Neuropharmacology 58(1):286–296. doi:10.1016/j.neuropharm.2009.06.030

    CAS  PubMed  Google Scholar 

  • Tatarczyñska E, Palucha A, Szewczyk B, Chojnacka-Wójcik E, Wieroñska J, Pilc A (2002) Anxiolytic and antidepressant-like effects of group III metabotropic glutamate agonist (1S,3R,4S)-1-aminocyclopentane-1,3,4-tricarboxylic acid (ACPT-I) in rats. Pol J Pharmacol 54:707–710

    PubMed  Google Scholar 

  • Tatton WG, Chalmers-Redman R, Brown D, Tatton N (2003) Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann Neurol 53 Suppl 3:S61–70. doi:10.1002/ana.10489 (discussion S70–62)

  • Truong L, Allbutt HN, Coster MJ, Kassiou M, Henderson JM (2009) Behavioural effects of a selective NMDA NR1A/2B receptor antagonist in rats with unilateral 6-OHDA + parafascicular lesions. Brain Res Bull 78(2–3):91–96. doi:10.1016/j.brainresbull.2008.10.004

    CAS  PubMed  Google Scholar 

  • Turski L, Bressler K, Rettig KJ, Loschmann PA, Wachtel H (1991) Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-d-aspartate antagonists. Nature 349(6308):414–418. doi:10.1038/349414a0

    CAS  PubMed  Google Scholar 

  • Ueda H, Ueda M (2009) Mechanisms underlying morphine analgesic tolerance and dependence. Front Biosci 14:5260–5272

    CAS  Google Scholar 

  • Valenti O, Marino MJ, Wittmann M, Lis E, DiLella AG, Kinney GG, Conn PJ (2003) Group III metabotropic glutamate receptor-mediated modulation of the striatopallidal synapse. J Neurosci 23(18):7218–7226

    CAS  PubMed  Google Scholar 

  • Varanese S, Howard J, Di Rocco A (2010) NMDA antagonist memantine improves levodopa-induced dyskinesias and “on-off” phenomena in Parkinson’s disease. Mov Disord 25(4):508–510. doi:10.1002/mds.22917

    PubMed  Google Scholar 

  • Vernon AC, Palmer S, Datla KP, Zbarsky V, Croucher MJ, Dexter DT (2005) Neuroprotective effects of metabotropic glutamate receptor ligands in a 6-hydroxydopamine rodent model of Parkinson’s disease. Eur J Neurosci 22(7):1799–1806. doi:10.1111/j.1460-9568.2005.04362.x

    CAS  PubMed  Google Scholar 

  • Walker K, Bowes M, Panesar M, Davis A, Gentry C, Kesingland A, Gasparini F, Spooren W, Stoehr N, Pagano A, Flor PJ, Vranesic I, Lingenhoehl K, Johnson EC, Varney M, Urban L, Kuhn R (2001) Metabotropic glutamate receptor subtype 5 (mGlu5) and nociceptive function. I. Selective blockade of mGlu5 receptors in models of acute, persistent and chronic pain. Neuropharmacology 40(1):1–9

    CAS  PubMed  Google Scholar 

  • Wang JQ, Arora A, Yang L, Parelkar NK, Zhang G, Liu X, Choe ES, Mao L (2005) Phosphorylation of AMPA receptors: mechanisms and synaptic plasticity. Mol Neurobiol 32(3):237–249. doi:10.1385/mn:32:3:237

    CAS  PubMed  Google Scholar 

  • Wang H, Jiang W, Yang R, Li Y (2011) Spinal metabotropic glutamate receptor 4 is involved in neuropathic pain. NeuroReport 22(5):244–248. doi:10.1097/WNR.0b013e3283453843

    CAS  PubMed  Google Scholar 

  • Warraich ST, Allbutt HN, Billing R, Radford J, Coster MJ, Kassiou M, Henderson JM (2009) Evaluation of behavioural effects of a selective NMDA NR1A/2B receptor antagonist in the unilateral 6-OHDA lesion rat model. Brain Res Bull 78(2–3):85–90. doi:10.1016/j.brainresbull.2008.08.023

    CAS  PubMed  Google Scholar 

  • Wesseldijk F, Fekkes D, Huygen FJ, van de Heide-Mulder M, Zijlstra FJ (2008) Increased plasma glutamate, glycine, and arginine levels in complex regional pain syndrome type 1. Acta Anaesthesiol Scand 52(5):688–694. doi:10.1111/j.1399-6576.2008.01638.x

    CAS  PubMed  Google Scholar 

  • Wessell RH, Ahmed SM, Menniti FS, Dunbar GL, Chase TN, Oh JD (2004) NR2B selective NMDA receptor antagonist CP-101,606 prevents levodopa-induced motor response alterations in hemi-parkinsonian rats. Neuropharmacology 47(2):184–194. doi:10.1016/j.neuropharm.2004.03.011

    CAS  PubMed  Google Scholar 

  • Wierońska JM, Stachowicz K, Pałucha-Poniewiera A, Acher F, Brański P, Pilc A (2010) Metabotropic glutamate receptor 4 novel agonist LSP1-2111 with anxiolytic, but not antidepressant-like activity, mediated by serotonergic and GABAergic systems. Neuropharmacology 59(7–8):627–634. doi:10.1016/j.neuropharm.2010.08.008

    PubMed  Google Scholar 

  • Willert RP, Woolf CJ, Hobson AR, Delaney C, Thompson DG, Aziz Q (2004) The development and maintenance of human visceral pain hypersensitivity is dependent on the N-methyl-d-aspartate receptor. Gastroenterology 126(3):683–692. doi:10.1053/j.gastro.2003.11.047

    CAS  PubMed  Google Scholar 

  • Wolf E, Seppi K, Katzenschlager R, Hochschorner G, Ransmayr G, Schwingenschuh P, Ott E, Kloiber I, Haubenberger D, Auff E, Poewe W (2010) Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Mov Disord 25(10):1357–1363. doi:10.1002/mds.23034

    PubMed  Google Scholar 

  • Wu HM, Tzeng NS, Qian L, Wei SJ, Hu X, Chen SH, Rawls SM, Flood P, Hong JS, Lu RB (2009) Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology 34(10):2344–2357. doi:10.1038/npp.2009.64

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto N, Soghomonian JJ (2009) Metabotropic glutamate mGluR5 receptor blockade opposes abnormal involuntary movements and the increases in glutamic acid decarboxylase mRNA levels induced by L-DOPA in striatal neurons of 6-hydroxydopamine-lesioned rats. Neuroscience 163(4):1171–1180. doi:10.1016/j.neuroscience.2009.07.060

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshizumi M, Eisenach JC, Hayashida KI (2013) Valproate prevents dysregulation of spinal glutamate and reduces the development of hypersensitivity in rats after peripheral nerve injury. J Pain Off J Am Pain Soc. doi:10.1016/j.jpain.2013.07.007

    Google Scholar 

  • Young RL, Cooper NJ, Blackshaw LA (2008) Anatomy and function of group III metabotropic glutamate receptors in gastric vagal pathways. Neuropharmacology 54(6):965–975. doi:10.1016/j.neuropharm.2008.02.010

    CAS  PubMed  Google Scholar 

  • Zammataro M, Chiechio S, Montana MC, Traficante A, Copani A, Nicoletti F, Gereau RWt (2011) mGlu2 metabotropic glutamate receptors restrain inflammatory pain and mediate the analgesic activity of dual mGlu2/mGlu3 receptor agonists. Mol Pain 7:6. doi:10.1186/1744-8069-7-6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zarate CA Jr, Mathews D, Ibrahim L, Chaves JF, Marquardt C, Ukoh I, Jolkovsky L, Brutsche NE, Smith MA, Luckenbaugh DA (2013) A randomized trial of a low-trapping nonselective N-methyl-d-aspartate channel blocker in major depression. Biol Psychiatry 74(4):257–264. doi:10.1016/j.biopsych.2012.10.019

    CAS  PubMed  Google Scholar 

  • Zerbib F, Bruley des Varannes S, Roman S, Tutuian R, Galmiche JP, Mion F, Tack J, Malfertheiner P, Keywood C (2011) Randomised clinical trial: effects of monotherapy with ADX10059, a mGluR5 inhibitor, on symptoms and reflux events in patients with gastro-oesophageal reflux disease. Aliment Pharmacol Ther 33(8):911–921. doi:10.1111/j.1365-2036.2011.04596.x

    Google Scholar 

  • Zhang X, Fogel R (2003) Involvement of glutamate in gastrointestinal vago-vagal reflexes initiated by gastrointestinal distention in the rat. Auton Neurosci Basic Clin 103:19–37

    CAS  Google Scholar 

  • Zhu CZ, Wilson SG, Mikusa JP, Wismer CT, Gauvin DM, Lynch JJ 3rd, Wade CL, Decker MW, Honore P (2004) Assessing the role of metabotropic glutamate receptor 5 in multiple nociceptive modalities. Eur J Pharmacol 506(2):107–118. doi:10.1016/j.ejphar.2004.11.005

    CAS  PubMed  Google Scholar 

  • Zuddas A, Oberto G, Vaglini F, Fascetti F, Fornai F, Corsini GU (1992a) MK-801 prevents 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine-induced Parkinsonism in primates. J Neurochem 59:733–739

    CAS  PubMed  Google Scholar 

  • Zuddas A, Vaglini F, Fornai F, Fascetti F, Saginario A, Corsini GU (1992b) Pharmacologic modulation of MPTP toxicity: MK 801 in prevention of dopaminergic cell death in monkeys and mice. Ann N Y Acad Sci 648:268–271

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SD has received grant funding/research support on projects relating to glutamate in Parkinson’s disease from the Wellcome Trust, UK Medical Research Council, Guy’s King’s and St Thomas’ Charitable trustees, Parkinson’s UK, and Centre for Integrative Biomedicine at King’s College London, However, no sources of funding have been used to prepare this review. CF holds an MRC CASE Studentship with Eli Lilly and Co Ltd.

Conflict of interest

There are no conflicts of interest to note.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Duty.

Chemical names of glutamatergic drugs by pharmacological class

Chemical names of glutamatergic drugs by pharmacological class

AMPA receptor antagonists (*mixed AMPA/Kainate antagonist): IEM-1460, N,N,H,-trimethyl-5-[(tricyclo[3.3.1.13,7]dec-1-ylmethyl)amino]-1-pentanaminiumbromide hydrobromide; NBQX, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline -7-sulfonamide; *talampanel (LY300164), (8R)-7-Acetyl-5-(4-aminophenyl)-8,9-dihydro-8-methyl-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; topiramate, 2,3:4,5-Bis-O-(1-methylethylidene)-beta-D-fructopyranose sulfamate.

AMPA receptor potentiators: LY404187, N-[2-(4′-cyanobiphenyl-4-yl)propyl]propane-2-sulfonamide; LY503430, 4′-{(1S)-1-fluoro-2-[(isopropylsulfonyl)amino]-1-methylethyl}-N-methylbiphenyl-4-carboxamide.

NMDA receptor antagonists: amantadine, adamantan-1-amine; AZD6765 (lanicemine), (1S)-1-Phenyl-2-pyridin-2-ylethanamine; CPP, 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid; ketamine, (RS)-2-(2-Chlorophenyl)-2-(methylamino)cyclohexanone; memantine, 3,5-dimethyladamantan-1-amine; MDL-100,453, [R]-4-oxo-5-phosphononorvaline; MK-801 (dizocilpine), [5R,10S]-[+]-5-methyl-10,11- dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine.

NR2B-selective NMDA receptor antagonists: BZAD-01, 4-trifluoromethoxy-N-(2-trifluoromethyl-benzyl)-benzamidine: CI-1041 (besonprodil), 6-[2-(4-[(4-fluorophenyl)methyl]piperidin-1-yl)ethylsulfinyl]-3H-1,3-benzoxazol-2-one; Co-101244 (Ro 63-1908), 1-[2-(4-hydroxyphenoxy)ethyl]-4-[(4-methylphenyl)methyl]-4-piperidinol hydrochloride; ifenprodil, 4-[2-(4-benzylpiperidin-1-yl)-1-hydroxypropyl]phenol; MK-0657, (3S,4R)-4-methylbenzyl 3-fluoro-4-((pyrimidin-2-ylamino)methyl)piperidine-1-carboxylate; Ro 25-6981, (αRS)-α-(4-hydroxyphenyl)-β-methyl-4-(phenylmethyl)-1-piperidinepropanol; traxoprodil (CP-101,606), (1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol.

Group II mGlu receptor agonists: DCG-IV, (2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine; LY354740, (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid; LY379268, (1R,4R,5S,6R)-4-amino-2-oxabicyclo[3.1.0]hexane-4,6-dicarboxylic acid.

mGlu2 receptor positive allosteric modulators (PAMs): THIIC, N-(4-((2-(trifluoromethyl)-3-hydroxy-4-(isobutyryl)phenoxy)methyl)benzyl)-1-methy l-1H-imidazole-4-carboxamide; 4-MPPTS (LY487379), N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2-trifluoroethylsulfonyl)pyrid-3-ylmethylamine.

Group III mGlu receptor agonists: ACPT-I, (1S,3R,4S)-1-aminocyclopentane-1,3,4-tricarboxylic acid; L-AP4, L-(+)-2-amino-4-phosphonobutyric acid.

mGlu4 receptor agonist. LSP1-2111, (2S)-2-amino-4-(hydroxyl(hydroxyl(4-hydroxy-3-methoxy-5-nitrophenyl)-methyl)phosphoryl)butanoic acid.

mGlu4 receptor PAMs: Lu AF21934, (1S,2R)-2-[(aminooxy)methyl]-N-(3,4-dichlorophenyl)cyclohexane-1-carboxamide; PHCCC, (−)-N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide; VU0155041, cis-2-[[(3,5-dichlorophenyl)amino]carbonyl]cyclohexanecarboxylic acid.

mGlu8 receptor agonist: (S)-DCPG, (S)-3,4-dicarboxyphenylglycine.

mGlu5 receptor antagonists or NAMS (negative allosteric modulators): ADX48621 (dipraglurant), 2-(4-{6-fluoroimidazo[1,2-a]pyridin-2-yl}but-1-yn-1-yl)pyridine; AFQ056 (mavoglurant), methyl (3aR,4S,7aR)-4-hydroxy-4-[(3-methylphenyl)ethynyl]octahydro-1H-indole-1-carboxylate; fenobam, 1-(3-chlorophenyl)-3-(3-methyl-5-oxo-4H-imidazol-2-yl)urea; MPEP, 2-methyl-6-(phenylethynyl) pyridine; MTEP, 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finlay, C., Duty, S. Therapeutic potential of targeting glutamate receptors in Parkinson’s disease. J Neural Transm 121, 861–880 (2014). https://doi.org/10.1007/s00702-014-1176-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1176-4

Keywords

Navigation