Skip to main content
Log in

Adult female rats' altered diurnal locomotor activity pattern following chronic methylphenidate treatment

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Methylphenidate (MPD) is one of the most prescribed pharmacological agents, which is also used for cognitive enhancement and recreational purposes. The objective of this study was to investigate the repetitive dose–response effects of MPD on circadian rhythm of locomotor activity pattern of female WKY rats. The hypothesis is that a change in the circadian activity pattern indicates a long-lasting effect of the drug. Four animal groups (saline control, 0.6, 2.5, and 10.0 mg/kg MPD dose groups) were housed in a sound-controlled room at 12:12 light/dark cycle. All received saline injections on experimental day 1 (ED 1). On EDs 2–7, the control group received saline injection; the other groups received 0.6, 2.5, or 10.0 mg/kg MPD, respectively. On ED 8–10, injections were withheld. On ED 11, each group received the same dose as EDs 2–7. Hourly histograms and cosine statistical analyses calculating the acrophase (ϕ), amplitude (A), and MESOR (M) were applied to assess the 24-h circadian activity pattern. The 0.6 and 2.5 mg/kg MPD groups exhibited significant (p < 0.05) change in their circadian activity pattern on ED 11. The 10.0 mg/kg MPD group exhibited tolerance on ED 11 and also a significant change in activity pattern on ED 8 compared to ED 1, consistent with withdrawal behavior (p < 0.007). In conclusion, chronic MPD administration alters circadian locomotor activity of adult female WKY rats and confirms that chronic MPD use elicits long-lasting effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Algahim MF, Yang PB, Wilcox VT, Burau KD, Swann AC, Dafny N (2009) Prolonged methylphenidate treatment alters the behavioral diurnal activity pattern of adult male Sprague–Dawley rats. Pharmacol Biochem Behav 92:93–99

    PubMed  CAS  Google Scholar 

  • Amini B, Yang PB, Swann AC, Dafny N (2004) Differential locomotor responses in male rats from three strains to acute methylphenidate. Int J Neurosci 114:1063–1084

    PubMed  CAS  Google Scholar 

  • Antle MC, van Diep HC, Deboer T, Pedram P, Pereira RR, Meijer JH (2012) Methylphenidate modifies the motion of the circadian clock. Neuropsychopharmacology 37:2446–2455

    PubMed  CAS  Google Scholar 

  • Benstaali C, Mailloux A, Bogdan A, Auzeby A, Touitou Y (2001) Circadian rhythms of body temperature and motor activity in rodents their relationships with the light–dark cycle. Life Sci 68:2645–2656

    PubMed  CAS  Google Scholar 

  • Bergheim M, Yang PB, Burau KD, Dafny N (2012) Adolescent rat circadian activity is modulated by psychostimulants. Brain Res 1431:35–45

    PubMed  CAS  Google Scholar 

  • Bingham C, Arbogast B, Guillaume GC, Lee JK, Halberg F (1982) Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia 9(4):397–439

    PubMed  CAS  Google Scholar 

  • Bittman EL, Doherty L, Huang L, Paroskie A (2003) Period gene expression in mouse endocrine tissues. Am J Physiol Regul Integr Comp Physiol 285:561–569

    Google Scholar 

  • Boudreau AC, Wolf ME (2005) Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J Neurosci 25:9144–9151

    PubMed  CAS  Google Scholar 

  • Boudreau AC, Reimers JM, Milovanovic M, Wolf ME (2007) Cell surface AMPA receptors in the rat nucleus accumbens increase during cocaine withdrawal but internalize after cocaine challenge in association with altered activation of mitogen-activated protein kinases. J Neurosci 27:10621–10635

    PubMed  CAS  Google Scholar 

  • Bowman BP, Kuhn CM (1996) Age-related differences in the chronic and acute response to cocaine in the rat. Dev Psychobiol 29:597–611

    PubMed  CAS  Google Scholar 

  • Brandon CL, Steiner H (2003) Repeated methylphenidate treatment in adolescent rats alters gene regulation in the striatum. Eur J Neurosci 18(6):1584–1592

    PubMed  Google Scholar 

  • Bray MS, Young ME (2007) Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte. Obes Rev 8:169–181

    PubMed  CAS  Google Scholar 

  • Brecht ML, O’Brien A, van Mayrhauser C, Anglin MD (2004) Methamphetamine use behaviors and gender differences. Addict Behav 29:89–106

    PubMed  Google Scholar 

  • CDC 2011 report. Division of Human development, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention. www.cdc.gov/ncbddd/index.html. Page last updated: December 12, 2011

  • Cermakian N, Sassone-Corsi P (2002) Environmental stimulus perception and control of circadian clocks. Curr Opin Neurobiol 12:359–365

    PubMed  CAS  Google Scholar 

  • Chao J, Nestler EJ (2004) Molecular neurobiology of drug addiction. Annu Rev Med 55:113–132

    PubMed  CAS  Google Scholar 

  • Chelaru MI, Yang PB, Dafny N (2012) Sex differences in the behavioral response to methylphenidate in three adolescent rat strains (WKY, SHR, SD). Behav Brain Res 226:8–17

    PubMed  CAS  Google Scholar 

  • Chen CP, Kuhn P, Advis JP, Sarkar DK (2004) Chronic ethanol consumption impairs the circadian rhythm of pro-opiomelanocortin and period genes mRNA expression in the hypothalamus of the male rat. J Neurochem 88(6):1547–1554

    PubMed  CAS  Google Scholar 

  • Chen JC, Chen PC, Chiang YC (2009) Molecular mechanisms of psychostimulant addiction. Chang Gung Med J 32:148–154

    PubMed  Google Scholar 

  • Chong SL, Claussen CM, Dafny N (2012) Nucleus accumbens neuronal activity in freely behaving rats is modulated following acute and chronic methylphenidate administration 2 204. Brain Res Bull 87:445–456

    PubMed  CAS  Google Scholar 

  • Claussen C, Dafny N (2012) Acute and chronic methylphenidate modulates the neuronal activity of the caudate nucleus recorded from freely behaving rats 4 207. Brain Res Bull 87:387–396

    PubMed  CAS  Google Scholar 

  • Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng LJ, Shaham Y, Marinelli M, Wolf ME (2008) Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454:118–121

    PubMed  CAS  Google Scholar 

  • Crutchley A, Temlett JA (1999) Methylphenidate (Ritalin) use and abuse. S Afr Med J Oct 89(10):1076–1079

    CAS  Google Scholar 

  • Dafny N, Yang PB (2006) The role of age, genotype, sex, and route of acute and chronic administration of methylphenidate: a review of its locomotor effects. Brain Res Bull 68:393–405

    PubMed  CAS  Google Scholar 

  • Ding YS, Gatley SJ, Thanos PK, Shea C, Garza V, Xu Y, Carter P, King P, Warner D, Taintor N, Park D, Pyatt B, Fowler JS, Volkow N (2004) Brain kinetics of methylphenidate (Ritalin) enantiomers after oral administration. Synapse 53:168–175

    PubMed  CAS  Google Scholar 

  • Einhorn LC, Johansen PA, White FJ (1988) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J Neurosci 8:100–112

    PubMed  CAS  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    PubMed  CAS  Google Scholar 

  • Ferguson SM, Eskenazi D, Ishikawa M, Wanat MJ, Phillips PE, Dong Y et al (2010) Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat Neurosci 14(1):22–24

    PubMed  Google Scholar 

  • Filipski E, King VM, Li X, Granda TG, Mormont MC, Liu X, Claustrat B, Hastings MH, Levi F (2002) Host circadian clock as a control point in tumor progression. J Natl Cancer Inst 94:690–697

    PubMed  Google Scholar 

  • Gatley SJ, Volkow ND, Gifford AN, Fowler JS, Dewey SL, Ding YS, Logan J (1999) Dopamine-transporter occupancy after intravenous doses of cocaine and methylphenidate in mice and humans. Psychopharmacol 146:93–100

    CAS  Google Scholar 

  • Gaytan O, Swann AC, Dafny N (1996) Effects of amphetamine at the beginning of the light cycle on multiple indices of motor activity in the rat. Eur J Pharmacol 300(1–2):1–8

    PubMed  CAS  Google Scholar 

  • Gaytan O, Al-Rahim S, Swann A, Dafny N (1997) Sensitization to locomotor effects of methylphenidate in the rat. Life Sci 61:PL101–PL107

    PubMed  CAS  Google Scholar 

  • Gaytan O, Nason R, Alagugurusamy R, Swann A, Dafny N (2000a) MK 801 blocks the development of sensitization to the locomotor effects of methylphenidate. Brain Res Bull 51:485–492

    PubMed  CAS  Google Scholar 

  • Gaytan O, Yang P, Swann A, Dafny N (2000b) Diurnal differences in sensitization to methylphenidate. Brain Res 864:24–39

    PubMed  CAS  Google Scholar 

  • Girault JA, Greengard P (2004) The neurobiology of dopamine signaling. Arch Neurol 61:641–644

    PubMed  Google Scholar 

  • Glaser AM, Reyes-Vazquez C, Prieto-Gomex B, Burau K, Dafny N (2012) Morphine administration and abrupt cessation alter the behavioral diurnal activity pattern. Pharmacol Biochem Behav 101:544–552

    PubMed  CAS  Google Scholar 

  • Greely H, Sahakian B, Harris J, Kessler RC, Gazzaniga M, Campbell P, Farah MJ (2008) Towards responsible use of cognitive-enhancing drugs by the healthy. Nature 456:702–705

    PubMed  CAS  Google Scholar 

  • Hernandez-Avila CA, Rounsaville BJ, Kranzler HR (2004) Opioid-, cannibis-, and alcohol-dependent women show more rapid progression to substance abuse treatment. Drug Alcohol Depend 74:265–272

    PubMed  CAS  Google Scholar 

  • Huang YH, Lin Y, Mu P, Lee BR, Brown TE, Wayman G, Marie H, Liu W, Yen Z, Sorg BA, Schluter OM, Zukin RS, Dong Y (2009) In vivo cocaine experience generates silent synapses. Neuron 63:40–47

    PubMed  CAS  Google Scholar 

  • Iijima M, Nikaido T, Akiyama M, Moriya T, Shibata S (2002) Methamphetamine-induced, suprachiasmatic nucleus-independent circadian rhythms of activity and mPer gene expression in the striatum of the mouse. Eur J Neurosci 16:921–929

    PubMed  Google Scholar 

  • Izenwasser S, French D (2002) Tolerance and sensitization to the locomotor-activating effects of cocaine are mediated via independent mechanisms. Pharmacol Biochem Behav 73:877–882

    PubMed  CAS  Google Scholar 

  • Izenwasser S, Coy AE, Ladenheim B, Loeloff RJ, Cadet JL, French D (1999) Chronic methylphenidate alters locomotor activity and dopamine transporters differently from cocaine. Eur J Pharmacol 373:187–193

    PubMed  CAS  Google Scholar 

  • Janssen BJA, Tyssen CM, Duindam H, Rietweld WJ (1994) Suprachiasmatic lesions eliminate 24-h blood pressure variability in rats. Physiol Behav 55:307–311

    PubMed  CAS  Google Scholar 

  • Johnson RF, Moore RY, Morin LP (1988) Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Res 460:297–313

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Rev 16:223–244

    PubMed  CAS  Google Scholar 

  • Kallman WM, Isacc W (1975) The effects of age and illumination on the dose–response curve for three stimulants. Psychopharmacology (Berlin) 40:313–318

    CAS  Google Scholar 

  • Karlsson B, Knutsson A, Lindahl B (2001) Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup Environ Med 58:747–752

    PubMed  CAS  Google Scholar 

  • Kelly SJ, Ostrowski NL, Wilson MA (1999) Gender differences in brain and behavior: hormonal and neural bases. Pharmacol Biochem Behav 64:655–664

    PubMed  CAS  Google Scholar 

  • Klein DC, Moore RY, Reppert SM (1991) Suprachiasmaic nucleus: the mind’s clock. Oxford UP, New York ISBN-13: 978-0195062502

    Google Scholar 

  • Kleven MS, Perry BD, Woolverton WL, Seiden LA (1990) Effects of repeated injections of cocaine on D1 and D2 dopamine receptors in rat brain. Brain Res 532:265–270

    PubMed  CAS  Google Scholar 

  • Kollins SH, MacDonald EK, Rush CR (2001) Assessing the abuse potential of methylphenidate in nonhuman and human subjects: a review. Pharmacol Biochem Behav 68(3):611–627

    PubMed  CAS  Google Scholar 

  • Kreitzer AC, Malenka RC (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60(4):543–554

    PubMed  CAS  Google Scholar 

  • Kuczenski R, Segal DS (2002) Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J Neurosci 22(16):7264–7271

    PubMed  CAS  Google Scholar 

  • Lamont EW, James FO, Boivin DB, Cermakian N (2007) From circadian clock gene expression to pathologies. Sleep Med 8:547–556

    PubMed  Google Scholar 

  • Lee KW, Kim Y, Kim AM, Helmin K, Nairn AC, Greengard P (2006) Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc Natl Acad Sci USA 103:3399–3404

    PubMed  CAS  Google Scholar 

  • Lee MJ, Swann AC, Dafny N (2008) Methylphenidate sensitization is prevented by prefrontal cortex lesion. Brain Res Bull 76:131–140

    PubMed  CAS  Google Scholar 

  • Lee MJ, Yang PB, Wilcox VT, Burau KD, Swann AC, Dafny N (2011) Repetitive methylphenidate administration modulates the diurnal behavioral activity pattern of adult female SD rats. J Neural Transm 118:285–298

    PubMed  CAS  Google Scholar 

  • Lynch WJ (2008) Acquisition and maintenance of cocaine self-administration in adolescent rats: effects of sex and gonadal hormone. Psychopharmacology 197:237–246

    PubMed  CAS  Google Scholar 

  • Malenka RC, Nicoll RA (1999) Long-term potentiation—a decade of pregress? Science 285:1870–1874

    PubMed  CAS  Google Scholar 

  • Manev H, Uz T (2006) Clock genes: influencing and being influenced by psychoactive drugs. Trends Pharmacol Sci 27(4):187–189

    Google Scholar 

  • Marie H, Morishita W, Yu X, Calakos N, Malenka RC (2005) Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron 45:741–752

    PubMed  CAS  Google Scholar 

  • Massello WI, Carpenter DA (1999) A fatality due to the intranasal abuse of methylphenidate (Ritalin). J Forensic Sci 44:220–221

    PubMed  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davis GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    PubMed  CAS  Google Scholar 

  • McCabe SE, Knight JR, Teter CJ, Wechsler H (2005) Non-medical use of prescription stimulants among US college students: prevalence and correlates from a national survey. Addiction 100:96–106

    PubMed  Google Scholar 

  • Melnick SM, Dow-Edwards DL (2001) Differential responses to chronic amphetamine in adult male and female rats exposed to postnatal cocaine treatment. Pharmacol Biochem Behav 69:219–234

    PubMed  CAS  Google Scholar 

  • Mistleberger RE (2005) Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. Brain Res Brain Res Rev 49:429–454

    Google Scholar 

  • Moore RY (1983) Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus. Fed Proc 42(11):2783–2789

    PubMed  CAS  Google Scholar 

  • Moore RY, Lenn NJ (1972) A retinohypothalamic projection in the rat. J Comp Neurol 146:1–14

    PubMed  CAS  Google Scholar 

  • Nagerl UV, Eberhorn N, Cambridge SB, Bonhoeffer T (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44:759–767

    PubMed  Google Scholar 

  • Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    PubMed  CAS  Google Scholar 

  • Nestler EJ, Malenka RC (2004) The addicted brain. Sci Am 290:78–85

    PubMed  CAS  Google Scholar 

  • Okamoto KI, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7:1104–1112

    PubMed  CAS  Google Scholar 

  • Patrick KS, Markowitz JS (1997) Pharmacology of methylphenidate, amphetamine enantiomers, and penoline in attention deficit/hyperactivity disorder. Hum Psychopharmacol 12:527–546

    CAS  Google Scholar 

  • Podet A, Lee MJ, Swanda AC, Dafny N (2010) Nucleus accumbens lesion modulates the effects of methylphenidate. Brain Res Bull 82:293–301

    PubMed  CAS  Google Scholar 

  • Reid K, Burgess H (2005) Circadian rhythm sleep disorders. Prim Care 32(2):449–473

    PubMed  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    PubMed  CAS  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    PubMed  CAS  Google Scholar 

  • Robinson TE, Kolb B (2004) Structural plasticity associated with exposure of drugs of abuse. Neuropharmacology 47(Suppl 1):33–46

    PubMed  CAS  Google Scholar 

  • Ruskin DN, Bergstrom DA, Shenker A, Freeman LE, Baek D, Walters JR (2001) Drugs used in the treatment of attention-deficit/hyperactivity disorder affect postsynaptic firing rate and oscillation without preferential dopamine autoreceptor action. Biol Psychiatry 49:340–350

    PubMed  CAS  Google Scholar 

  • Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ (2010) The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 33:267–276

    PubMed  CAS  Google Scholar 

  • Salek RL, Claussen CM, Perez A, Dafny N (2012) Acute and chronic methylphenidate alters prefrontal cortex neuronal activity recorded from freely behaving rats. Eur J Pharmacol 679:60–67

    PubMed  CAS  Google Scholar 

  • Shi X, McGinty JF (2010) D1 and D2 dopamine receptors differentially mediate the activation of phosphoproteins in the striatum of amphetamine-sensitized rats. Psychopharmacology 214(3):653–663

    PubMed  Google Scholar 

  • Shi WX, Zheng P, Liang XF, Bunney BS (1997) Characterization of dopamine-induced depolarization of prefrontal cortical neurons. Synapse 26:415–422

    PubMed  CAS  Google Scholar 

  • Sklair-Tavron L, Shi WX, Lane SB, Harris HW, Bunney BS, Nestler EJ (1996) Chronic morphine induces visible changes in the morphology of mesFolimbic dopamine neurons. Proc Natl Acad Sci USA 93:11202–11207

    PubMed  CAS  Google Scholar 

  • Solanto MV (1998) Neuropsychopharmacological mechanisms of stimulant drug action in attention deficit hyperactivity disorder: a review and integration. Behav Brain Res 94(1):127–152

    PubMed  CAS  Google Scholar 

  • Solanto MV (2000) Clinical psychopharmacology of AD/HD: implications for animal models. Neurosci Biobehav Rev 24(1):27–30

    PubMed  CAS  Google Scholar 

  • Stix G (2009) Turbocharging the brain. Sci Am. 301(4):46–49 52–55

    PubMed  Google Scholar 

  • Sujino M, Masumoto KH, Yamaguchi S, van der Horst GT, Okamura H, Inouye ST (2003) Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr Biol 13:664–668

    PubMed  CAS  Google Scholar 

  • Vitaterna MH, Takahashi JS, Turek FW (2001) Overview of circadian rhythms. Alcohol Res Health 25:85–93

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Wong C, Hitzemann R, Papas NR (1999) Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D2 receptors. J Pharmacol Exp Ther 291:409–415

    PubMed  CAS  Google Scholar 

  • Wanchoo SJ, Swann AC, Dafny N (2009) Descendin glutamatergic pathway of PFC are involved in acute and chronic action of methylphenidate. Brain Res 1301:68–79

    PubMed  CAS  Google Scholar 

  • Welsh DK, Logothetis DE, Meister M, Reppert S (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706

    PubMed  CAS  Google Scholar 

  • White SR, Yadao CM (2000) Characterization of methylphenidate exposures reported to a regional poison control center. Arch Pediatr Adolesc Med 154(12):1199–1203

    PubMed  CAS  Google Scholar 

  • Wirz-Justice A (1987) Circadian rhythms in mammalian neurotransmitter receptors. Prog Neurobiol 29:219–259

    PubMed  CAS  Google Scholar 

  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    PubMed  CAS  Google Scholar 

  • Yang PB, Beasley A, Swann A, Dafny N (2000a) Valproate modulates the expression of methylphenidate (Ritalin) sensitization. Brain Res 874:216–220

    PubMed  CAS  Google Scholar 

  • Yang PB, Swann A, Dafny N (2000b) NMDA receptor antagonist disrupt acute and chronic effects of methylphenidate. Physiol Behav 71:133–145

    PubMed  CAS  Google Scholar 

  • Yang PB, Singhal N, Modi G, Swann A, Dafny N (2001) Effects of lithium chloride on induction and expression of methylphenidate sensitization. Eur J Pharmacol 426(1–2):65–72

    PubMed  CAS  Google Scholar 

  • Yang PB, Amini B, Swann AC, Dafny N (2003) Strain differences in the behavioral responses of male rats to chronically administered methylphenidate. Brain Res 971(2):139–152

    PubMed  CAS  Google Scholar 

  • Yang PB, Swann A, Dafny N (2006a) Dose response characteristics of methylphenidate on locomotor behavior and on sensory evoked potentials recorded from VTA, NAc and PFC in freely behaving rats. Behav Brain Funct 4:25–36

    Google Scholar 

  • Yang PB, Swann AC, Dafny N (2006b) Acute and chronic methylphenidate dose–response assessment on three adolescent male rat strains. Brain Res Bull 71(1–3):301–310

    PubMed  CAS  Google Scholar 

  • Yang PB, Swann AC, Dafny N (2007) Chronic administration of methylphenidate produces neurophysiological and behavioral sensitization. Brain Res 1145:66–80

    PubMed  CAS  Google Scholar 

  • Yang PB, Cuellar DO III, Swann AC, Dafny N (2011) Age and genetic strain differences in response to chronic methylphenidate administration 103. Behav Brain Res 218:206–217

    PubMed  CAS  Google Scholar 

  • Zhang L, Lou D, Jiao H, Zhang D, Wang X, Xia Y et al (2004) Cocaine-induced intracellular signaling and gene expression are oppositely regulated by the dopamine D1 and D3 receptors. J Neurosci 24(13):3344–3354

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mallinckrodt for their donation of methylphenidate. This research was supported in part by NIH R01 DA027222. All of the authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Dafny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trinh, T.N., Kohllepel, S.R., Yang, P.B. et al. Adult female rats' altered diurnal locomotor activity pattern following chronic methylphenidate treatment. J Neural Transm 120, 1717–1731 (2013). https://doi.org/10.1007/s00702-013-1063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-1063-4

Keywords

Navigation