Skip to main content

Advertisement

Log in

Effects of leptin on pedunculopontine nucleus (PPN) neurons

  • Translational Neurosciences - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Leptin, a hormone that regulates appetite and energy expenditure, is increased in obese individuals, although these individuals often exhibit leptin resistance. Obesity is characterized by sleep/wake disturbances, such as excessive daytime sleepiness, increased REM sleep, increased nighttime arousals, and decreased percentage of total sleep time. Several studies have shown that short sleep duration is highly correlated with decreased leptin levels in both animal and human models. Arousal and rapid eye movement (REM) sleep are regulated by the cholinergic arm of the reticular activating system, the pedunculopontine nucleus (PPN). The goal of this project was to determine the role of leptin in the PPN, and thus in obesity-related sleep disorders. Whole-cell patch-clamp recordings were conducted on PPN neurons in 9- to 17-day-old rat brainstem slices. Leptin decreased action potential (AP) amplitude, AP frequency, and h-current (I H). These findings suggest that leptin causes a blockade of Na+ channels. Therefore, we conducted an experiment to test the effects of leptin on Na+ conductance. To determine the average voltage dependence of this conductance, results from each cell were equally weighted by expressing conductance as a fraction of the maximum conductance in each cell. I Na amplitude was decreased in a dose-dependent manner, suggesting a direct effect of leptin on these channels. The average decrease in Na+ conductance by leptin was ~40 %. We hypothesize that leptin normally decreases activity in the PPN by reducing I H and I Na currents, and that in states of leptin dysregulation (i.e., leptin resistance) this effect may be blunted, therefore causing increased arousal and REM sleep drive, and ultimately leading to sleep-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamantidis A, Carter MC, de Lecea L (2010) Optogenetic deconstruction of sleep-wake circuitry in the brain. Front Mol Neurosci 2:31. doi:10.3389/neuro.02.031.2009

    Article  PubMed  Google Scholar 

  • Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62:413–437. doi:10.1146/annurev.physiol.62.1.413

    Article  PubMed  CAS  Google Scholar 

  • Ahima RS, Bjorbaek C, Osei S, Flier JS (1999) Regulation of neuronal and glial proteins by leptin: implications for brain development. Endocrinology 140(6):2755–2762

    Article  PubMed  CAS  Google Scholar 

  • Aldabal L, Bahammam AS (2011) Metabolic, endocrine, and immune consequences of sleep deprivation. Open Respir Medicine J 5:31–43. doi:10.2174/1874306401105010031

    Article  CAS  Google Scholar 

  • Beccuti G, Pannain S (2011) Sleep and obesity. Curr Opin Clin Nutr Metab Care 14(4):402–412. doi:10.1097/MCO.0b013e3283479109

    Article  PubMed  Google Scholar 

  • Carter ME, Brill J, Bonnavion P, Huguenard JR, Huerta R, de Lecea L (2012) Mechanism for hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci USA 109(39):E2635–E2644. doi:10.1073/pnas.1202526109

    Article  PubMed  CAS  Google Scholar 

  • Cottrell EC, Cripps RL, Duncan JS, Barrett P, Mercer JG, Herwig A, Ozanne SE (2009) Developmental changes in hypothalamic leptin receptor: relationship with the postnatal leptin surge and energy balance neuropeptides in the postnatal rat. Am J Physiol Regul Integr Comp Physiol 296(3):R631–R639. doi:10.1152/ajpregu.90690.2008

    Article  PubMed  CAS  Google Scholar 

  • Crill WE (1996) Persistent sodium current in mammalian central neurons. Annu Rev Physiol 58:349–362. doi:10.1146/annurev.ph.58.030196.002025

    Article  PubMed  CAS  Google Scholar 

  • Datta S, Desarnaud F (2010) Protein kinase A in the pedunculopontine tegmental nucleus of rat contributes to regulation of rapid eye movement sleep. J Neurosci Off J Soc Neurosci 30(37):12263–12273. doi:10.1523/jneurosci.1563-10.2010

    Article  CAS  Google Scholar 

  • Desarnaud F, Macone BW, Datta S (2011) Activation of extracellular signal-regulated kinase signaling in the pedunculopontine tegmental cells is involved in the maintenance of sleep in rats. J Neurochem 116(4):577–587. doi:10.1111/j.1471-4159.2010.07146.x

    Article  PubMed  CAS  Google Scholar 

  • Dixon JB, Dixon ME, Anderson ML, Schachter L, O’Brien PE (2007) Daytime sleepiness in the obese: not as simple as obstructive sleep apnea. Obesity (Silver Spring, MD) 15(10):2504–2511. doi:10.1038/oby.2007.297

    Article  Google Scholar 

  • Durakoglugil M, Irving AJ, Harvey J (2005) Leptin induces a novel form of NMDA receptor-dependent long-term depression. J Neurochem 95(2):396–405. doi:10.1111/j.1471-4159.2005.03375.x

    Article  PubMed  CAS  Google Scholar 

  • Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB (1998) Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 395(4):535–547

    Article  PubMed  CAS  Google Scholar 

  • Gan Y, Zhang Y, Digirolamo DJ, Jiang J, Wang X, Cao X, Zinn KR, Carbone DP, Clemens TL, Frank SJ (2010) Deletion of IGF-I receptor (IGF-IR) in primary osteoblasts reduces GH-induced STAT5 signaling. Mol Endocrinol (Baltimore, MD) 24(3):644–656. doi:10.1210/me.2009-0357

    Article  CAS  Google Scholar 

  • Garcia-Rill E (1997) Disorders of the reticular activating system. Med Hypotheses 49(5):379–387

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rill E (2009) Sleep and arousal states: reticular activating system. New Encycl Neurosci 8:137–143

    Article  Google Scholar 

  • Garcia-Rill E, Charlesworth A, Heister D, Ye M, Hayar A (2008) The developmental decrease in REM sleep: the role of transmitters and electrical coupling. Sleep 31(5):673–690

    PubMed  Google Scholar 

  • Herold KF, Hemmings HC Jr (2012) Sodium channels as targets for volatile anesthetics. Front Pharmacol 3:50. doi:10.3389/fphar.2012.00050

    Article  PubMed  CAS  Google Scholar 

  • Jouvet-Mounier D, Astic L, Lacote D (1970) Ontogenesis of the states of sleep in rat, cat, and guinea pig during the first postnatal month. Dev Psychobiol 2(4):216–239. doi:10.1002/dev.420020407

    Article  PubMed  CAS  Google Scholar 

  • Kamondi A, Williams JA, Hutcheon B, Reiner PB (1992) Membrane properties of mesopontine cholinergic neurons studied with the whole-cell patch-clamp technique: implications for behavioral state control. J Neurophysiol 68(4):1359–1372

    PubMed  CAS  Google Scholar 

  • Kezunovic N, Urbano FJ, Simon C, Hyde J, Smith K, Garcia-Rill E (2011) Mechanism behind gamma band activity in the pedunculopontine nucleus. Eur J Neurosci 34(3):404–415. doi:10.1111/j.1460-9568.2011.07766.x

    Article  PubMed  Google Scholar 

  • Kobayashi T, Good C, Mamiya K, Skinner RD, Garcia-Rill E (2004) Development of REM sleep drive and clinical implications. J Appl Physiol (Bethesda, MD: 1985) 96(2):735–746. doi:10.1152/japplphysiol.00908.2003

    Article  CAS  Google Scholar 

  • Krebs DL, Hilton DJ (2000) SOCS: physiological suppressors of cytokine signaling. J Cell Sci 113(Pt 16):2813–2819

    PubMed  CAS  Google Scholar 

  • Leonard CS, Llinas R (1994) Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience 59(2):309–330

    Article  PubMed  CAS  Google Scholar 

  • Lindsley DB, Bowden JW, Magoun HW (1949) Effect upon the EEG of acute injury to the brain stem activating system. Electroencephalogr Clin Neurophysiol 1(4):475–486

    PubMed  CAS  Google Scholar 

  • Luthi A, McCormick DA (1998) H-current: properties of a neuronal and network pacemaker. Neuron 21(1):9–12

    Article  PubMed  CAS  Google Scholar 

  • Moruzzi G, Magoun HW (1995) Brain stem reticular formation and activation of the EEG. 1949. J Neuropsychiatry Clin Neurosci 7(2):251–267

    PubMed  CAS  Google Scholar 

  • Niswender KD, Morton GJ, Stearns WH, Rhodes CJ, Myers MG Jr, Schwartz MW (2001) Intracellular signalling. Key enzyme in leptin-induced anorexia. Nature 413(6858):794–795. doi:10.1038/35101657

    Article  PubMed  CAS  Google Scholar 

  • O’Malley D, Irving AJ, Harvey J (2005) Leptin-induced dynamic alterations in the actin cytoskeleton mediate the activation and synaptic clustering of BK channels. FASEB J Off Publ Fed Am Soc Exp Biol 19(13):1917–1919. doi:10.1096/fj.05-4166fje

    Google Scholar 

  • Roffwarg HP, Muzio JN, Dement WC (1966) Ontogenetic development of the human sleep-dream cycle. Science (New York, NY) 152(3722):604–619. doi:10.1126/science.152.3722.604

    Article  CAS  Google Scholar 

  • Rutters F, Gonnissen HK, Hursel R, Lemmens SG, Martens EA, Westerterp-Plantenga MS (2012) Distinct associations between energy balance and the sleep characteristics slow wave sleep and rapid eye movement sleep. Int J Obes. doi:10.1038/ijo.2011.250

    Google Scholar 

  • Sah N, Rajput SK, Singh JN, Meena CL, Jain R, Sikdar SK, Sharma SS (2011) l-pGlu-(2-propyl)-l-His-l-ProNH(2) attenuates 4-aminopyridine-induced epileptiform activity and sodium current: a possible action of new thyrotropin-releasing hormone analog for its anticonvulsant potential. Neuroscience 199:74–85. doi:10.1016/j.neuroscience.2011.10.008

    Article  PubMed  CAS  Google Scholar 

  • Sahu A (2011) Intracellular leptin-signaling pathways in hypothalamic neurons: the emerging role of phosphatidylinositol-3 kinase-phosphodiesterase-3B-cAMP pathway. Neuroendocrinology 93(4):201–210. doi:10.1159/000326785

    Article  PubMed  CAS  Google Scholar 

  • Shanley LJ, Irving AJ, Rae MG, Ashford ML, Harvey J (2002a) Leptin inhibits rat hippocampal neurons via activation of large conductance calcium-activated K+ channels. Nat Neurosci 5(4):299–300. doi:10.1038/nn824

    Article  PubMed  CAS  Google Scholar 

  • Shanley LJ, O’Malley D, Irving AJ, Ashford ML, Harvey J (2002b) Leptin inhibits epileptiform-like activity in rat hippocampal neurones via PI 3-kinase-driven activation of BK channels. J Physiol 545(Pt 3):933–944

    Article  PubMed  CAS  Google Scholar 

  • Shouse MN, Siegel JM (1992) Pontine regulation of REM sleep components in cats: integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep. Brain Res 571(1):50–63

    Article  PubMed  CAS  Google Scholar 

  • Simon C, Kezunovic N, Ye M, Hyde J, Hayar A, Williams DK, Garcia-Rill E (2010) Gamma band unit activity and population responses in the pedunculopontine nucleus. J Neurophysiol 104(1):463–474. doi:10.1152/jn.00242.2010

    Article  PubMed  CAS  Google Scholar 

  • Spiegel K, Knutson K, Leproult R, Tasali E, Van Cauter E (2005) Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J Appl Physiol (Bethesda, MD: 1985) 99(5):2008–2019. doi:10.1152/japplphysiol.00660.2005

    Article  CAS  Google Scholar 

  • Steriade M, Datta S, Pare D, Oakson G, Curro Dossi RC (1990) Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci Off J Soc Neurosci 10(8):2541–2559

    CAS  Google Scholar 

  • Storm JF (1987) Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells. J Physiol 385:733–759

    PubMed  CAS  Google Scholar 

  • Taheri S, Lin L, Austin D, Young T, Mignot E (2004) Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med 1(3):e62. doi:10.1371/journal.pmed.0010062

    Article  PubMed  Google Scholar 

  • Takakusaki K, Kitai ST (1997) Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat. Neuroscience 78(3):771–794

    Article  PubMed  CAS  Google Scholar 

  • Taylor CP (1993) Na+ currents that fail to inactivate. Trends Neurosci 16(11):455–460

    Article  PubMed  CAS  Google Scholar 

  • Udagawa J, Hatta T, Hashimoto R, Otani H (2007) Roles of leptin in prenatal and perinatal brain development. Congenit Anom 47(3):77–83. doi:10.1111/j.1741-4520.2007.00150.x

    Article  CAS  Google Scholar 

  • Urbano FJ, Kezunovic N, Hyde J, Simon C, Beck P, Garcia-Rill E (2012) Gamma band activity in the reticular activating system. Front Neurol 3:6. doi:10.3389/fneur.2012.00006

    Article  PubMed  CAS  Google Scholar 

  • Vgontzas AN, Bixler EO, Tan TL, Kantner D, Martin LF, Kales A (1998) Obesity without sleep apnea is associated with daytime sleepiness. Arch Intern Med 158(12):1333–1337

    Article  PubMed  CAS  Google Scholar 

  • Yang MJ, Wang F, Wang JH, Wu WN, Hu ZL, Cheng J, Yu DF, Long LH, Fu H, Xie N, Chen JG (2010a) PI3 K integrates the effects of insulin and leptin on large-conductance Ca2+-activated K+ channels in neuropeptide Y neurons of the hypothalamic arcuate nucleus. Am J Physiol Endocrinol Metab 298(2):E193–E201. doi:10.1152/ajpendo.00155.2009

    Article  PubMed  CAS  Google Scholar 

  • Yang RH, Wang WT, Hou XH, Hu SJ, Chen JY (2010b) Ionic mechanisms of the effects of sleep deprivation on excitability in hippocampal pyramidal neurons. Brain Res 1343:135–142. doi:10.1016/j.brainres.2010.05.019

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by USPHS awards F31 HL10842 (to PB), R01 NS020246, and by core facilities of the Center for Translational Neuroscience supported by P20 GM104325 (to EGR). In addition, Dr. Urbano was supported by FONCyT, Agencia Nacional de Promoción Científica y Tecnológica (http://www.ifibyne.fcen.uba.ar/new/): BID 1728 OC.AR. PICT 2008-2019 and PIDRI-PRH 2007 None of the authors have a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Garcia-Rill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, P., Urbano, F.J., Williams, D.K. et al. Effects of leptin on pedunculopontine nucleus (PPN) neurons. J Neural Transm 120, 1027–1038 (2013). https://doi.org/10.1007/s00702-012-0957-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0957-x

Keywords

Navigation