Skip to main content

Advertisement

Log in

Pedunculopontine stimulation from primate to patient

  • Movement Disorders - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) is a novel neurosurgical therapy developed to address symptoms of gait freezing and postural instability in Parkinson’s disease and related disorders. Here we summarise our non-human primate investigations of relevance to our surgical targeting of the PPN and relate the primate research to initial clinical experience of PPN DBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375

    Article  PubMed  CAS  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271

    Article  PubMed  CAS  Google Scholar 

  • Aring CD, Fulton JF (1936) Relation of the cerebrum to the cerebellum: Cerebellar tremor in the monkey and its absence after removal of the principal excitable areas of the cerebral cortex (Areas 4 and 5a, upper part); Accentuation of cerebellar tremor following lesions of the premotor area (Area 6a, upper part). Arch Neurol Psychiatr 35:439–466

    Google Scholar 

  • Aziz TZ, Peggs D, Sambrook MA, Crossman AR (1991) Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov Disord 6(4):288–292

    Article  PubMed  CAS  Google Scholar 

  • Aziz TZ, Davies L, Stein J, France S (1998) The role of descending basal ganglia connections to the brain stem in parkinsonian akinesia. Br J Neurosurg 12(3):245–249

    Article  PubMed  CAS  Google Scholar 

  • Bejjani B, Damier P, Arnulf I, Bonnet AM, Vidailhet M, Dormont D, Pidoux B, Cornu P, Marsault C, Agid Y (1997) Pallidal stimulation for Parkinson’s disease. Two targets? Neurology 49(6):1564–1569

    PubMed  CAS  Google Scholar 

  • Benabid AL, Pollak P, Gao D, Hoffmann D, Limousin P, Gay E, Payen I, Benazzouz A (1996) Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders [see comments] COMMENTS: Comment in: J Neurosurg 1997 Apr;86(4):737. J-Neurosurg 84(2):203–214

    Article  PubMed  CAS  Google Scholar 

  • Benabid AL, Benazzouz A, Hoffmann D, Limousin P, Krack P, Pollak P (1998) Long-term electrical inhibition of deep brain targets in movement disorders. Mov Disord 13(Suppl 3):119–125

    PubMed  Google Scholar 

  • Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249(4975):1436–1438

    Article  PubMed  CAS  Google Scholar 

  • Bingaman KD, Bakay RA (2000) The primate model of Parkinson’s disease: its usefulness, limitations, and importance in directing future studies. Prog Brain Res 127:267–297

    Article  PubMed  CAS  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Proc Natl Acad Sci USA 80(14):4546–4550

    Article  PubMed  CAS  Google Scholar 

  • Carlssone A, Lindquist M, Magnusson T (1957) 3, 4-Dihydroxy-phenylalanine and 5-hydroxytryptophan as reverse antagonists. Nature 180:1200–1201

    Article  Google Scholar 

  • Charara A, Smith Y, Parent A (1996) Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates: Phaseolus vulgaris-leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry. J Comp Neurol 364(2):254–266

    Article  PubMed  CAS  Google Scholar 

  • Collier TJ, Steece-Collier K, Kordower JH (2003) Primate models of Parkinson’s disease. Exp Neurol 183(2):258–262

    Article  PubMed  Google Scholar 

  • Cotzias GC, Van WM, Schiffer LM (1967) Aromatic amino acids and modification of parkinsonism. N Engl J Med 276:374–379

    Article  PubMed  CAS  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285

    Article  PubMed  CAS  Google Scholar 

  • Denny-Brown D (1962) The basal ganglia and their relation to disorders of movement Oxford neurological monographs. Oxford University Press, Oxford

    Google Scholar 

  • Eidelberg E, Walden JG, Nguyen LH (1981) Locomotor control in Macaque monkeys. Brain 104:647–663

    Article  PubMed  CAS  Google Scholar 

  • Emborg ME (2004) Evaluation of animal models of Parkinson’s disease for neuroprotective strategies. J Neurosci Methods 139(2):121–143

    Article  PubMed  CAS  Google Scholar 

  • Frasca J, Blumbergs PC, Henschke P, Burns RJ (1991) A clinical and pathological study of progressive supranuclear palsy. Clin Exp Neurol 28:79–89

    PubMed  CAS  Google Scholar 

  • Garcia Rill E (1986) The basal ganglia and the locomotor regions. Brain Res 396(1):47–63

    Article  PubMed  CAS  Google Scholar 

  • Garcia Rill E (1991) The pedunculopontine nucleus. Prog Neurobiol 36(5):363–389

    Article  PubMed  CAS  Google Scholar 

  • Garcia Rill E, Houser CR, Skinner RD, Smith W, Woodward DJ (1987) Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain Res Bull 18(6):731–738

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rill E, Simon C, Smith K, Kezunovic N, Hyde J (2011) The pedunculopontine tegmental nucleus: from basic neuroscience to neurosurgical applications. Arousal from slices to humans—implications for DBS. J Neural Transm. doi:10.1007/s00702-010-0500-x

  • Geula C, Schatz CR, Mesulam MM (1993) Differential localization of NADPH-diaphorase and calbindin-D28 k within the cholinergic neurons of the basal forebrain, striatum and brainstem in the rat, monkey, baboon and human. Neuroscience 54(2):461–476

    Article  PubMed  CAS  Google Scholar 

  • Giladi N, McDermott MP, Fahn S, Przedborski S, Jankovic J, Stern M, Tanner C (2001) Freezing of gait in PD: prospective assessment in the DATATOP cohort. Neurology 56(12):1712–1721

    PubMed  CAS  Google Scholar 

  • Gill S, Heywood P (1997) Bilateral dorsolateral subthalamotomy for advanced Parkinson’s disease. Lancet 350:1224

    Article  PubMed  CAS  Google Scholar 

  • Granata AR, Kitai ST (1991) Inhibitory substantia nigra inputs to the pedunculopontine neurons. Exp Brain Res 86:459–466

    Article  PubMed  CAS  Google Scholar 

  • Hallanger AE, Wainer BH (1988) Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat. J Comp Neurol 274:483–515

    Article  PubMed  CAS  Google Scholar 

  • Hamani C, Moro E, Lozano AM (2011) The pedunculopontine nucleus as a target for deep brain stimulation. J Neural Transm. doi:10.1007/s00702-010-0547-8

  • Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84(16):5976–5980

    Article  PubMed  CAS  Google Scholar 

  • Jackson JH (1868) Observations on the physiology and pathology of hemichorea. Edinb Med J 14:294–303

    Google Scholar 

  • Jackson A, Crossman AR (1983) Nucleus tegmenti pedunculopontinus, efferent connections with special reference to the basal ganglia, studied in the rat by anterograde and retrograde transport of horse radish peroxidase. Neuroscience 10(3):725–765

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51(4):540–543

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson N, Nandi D, Miall RC, Stein JF, Aziz TZ (2004) Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey. Neuroreport 15(17):2621–2624

    Article  PubMed  Google Scholar 

  • Jenkinson N, Nandi D, Aziz TZ, Stein JF (2005) Pedunculopontine nucleus: a new target for deep brain stimulation for akinesia. Neuroreport 16(17):1875–1876

    Article  PubMed  Google Scholar 

  • Jenkinson N, Nandi D, Oram R, Stein JF, Aziz TZ (2006) Pedunculopontine nucleus electric stimulation alleviates akinesia independently of dopaminergic mechanisms. Neuroreport 17(6):639–641

    Article  PubMed  Google Scholar 

  • Jenkinson N, Nandi D, Muthusamy K, Ray NJ, Gregory R, Stein JF, Aziz TZ (2009) Anatomy, physiology, and pathophysiology of the pedunculopontine nucleus. Mov Disord 24(3):319–328

    Article  PubMed  Google Scholar 

  • Jenner P (2003) The MPTP-treated primate as a model of motor complications in PD: primate model of motor complications. Neurology 61 (6 Suppl 3):S4-11

    Google Scholar 

  • Jones BE (1991) Paradoxical sleep and its chemical/structural substrates in the brain. Neuroscience 40:637–656

    Article  PubMed  CAS  Google Scholar 

  • Krack P, Benazzouz A, Pollak P, Limousin P, Piallat B, Hoffmann D, Xie J, Benabid AL (1998) Treatment of tremor in Parkinson’s disease by subthalamic nucleus stimulation. Mov Disord 13(6):907–914

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Dagher A, Hutchison WD, Lang AE, Lozano AM (1999) Globus pallidus deep brain stimulation for generalized dystonia: clinical and PET investigation. Neurology 53(4):871–874

    PubMed  CAS  Google Scholar 

  • Kuo SH, Kenney C, Jankovic J (2008) Bilateral pedunculopontine nuclei strokes presenting as freezing of gait. Mov Disord 23(4):616–619

    Article  PubMed  Google Scholar 

  • Laitinen LV (1972) Surgical treatment, past and present, in Parkinson’s disease. Acta Neurol Scand Suppl 51:43–58

    PubMed  CAS  Google Scholar 

  • Laitinen L, Vikki J (eds) (1973) Measurement of Parkinsonian hypokinesia with Purdue Pegboard and motor reaction time tests. Parkinson’s Disease, vol 2 Huber, Berlin

  • Laitinen LV, Bergenheim AT, Hariz MI (1992) Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 76(1):53–61

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219(4587):979–980

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Quik M, Petzinger G, Jakowec M, Di Monte DA (2000) Investigating levodopa-induced dyskinesias in the parkinsonian primate. Ann Neurol 47 (4 Suppl 1):S79–89

    Google Scholar 

  • Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344(2):190–209

    Article  PubMed  CAS  Google Scholar 

  • Lavoie B, Parent A (1994b) Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344(2):210–231

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Rye DB, Hallanger AE (1988) Cholinergic vs. non-cholinergic efferents from the mesopontine tegmentum to the extrapyramidal motor system nuclei. J Comp Neurol 275:469–492

    Article  PubMed  CAS  Google Scholar 

  • Linazasoro G (2004) Recent failures of new potential symptomatic treatments for Parkinson’s disease: causes and solutions. Mov Disord 19(7):743–754

    Article  PubMed  Google Scholar 

  • Marsden CD (1975) Primate models of neurological disorders. Introduction. Adv Neurol 10:3–4

    Google Scholar 

  • Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport 16(17):1877–1881

    Article  PubMed  Google Scholar 

  • Mazzone P, Scarnati E, Garcia-Rill E (2011a) Commentary: The pedunculopontine nucleus: clinical experience, basic questions and future directions. J Neural Transm. doi:10.1007/s00702-010-0530-4

  • Mazzone P, Sposato S, Insola A, Scarnati E (2011b) The deep brain stimulation of the pedunculopontine tegmental nucleus: towards a new stereotactic neurosurgery. J Neural Transm. doi:10.1007/s00702-011-0593-x

  • Mitchell IJ, Jackson A, Sambrook MA, Crossman AR (1989) The role of the subthalamic nucleus in experimental chorea. Evidence from 2-deoxyglucose metabolic mapping and horseradish peroxidase tracing studies. Brain 112 (Pt 6):1533–1548

    Google Scholar 

  • Moon-Edley S, Graybiel AM (1983) The afferent and efferent connections of the feline nucleus tegmenti pedunculopontis pars compacta. J Comp Neurol 217:187–215

    Google Scholar 

  • Munro-Davies LE, Winter J, Aziz TZ, Stein JF (1999) The role of the pedunculopontine region in basal-ganglia mechanisms of akinesia. Exp Brain Res 129(4):511–517

    Article  PubMed  CAS  Google Scholar 

  • Munro-Davies L, Winter J, Aziz TZ, Stein J (2001) Kainate acid lesions of the pedunculopontine region in the normal behaving primate. Mov Disord 16(1):150–151

    Article  PubMed  CAS  Google Scholar 

  • Nandi D, Aziz TZ, Giladi N, Winter J, Stein JF (2002a) Reversal of akinesia in experimental parkinsonism by GABA antagonist microinjections in the pedunculopontine nucleus. Brain 125(Pt 11):2418–2430

    Article  PubMed  Google Scholar 

  • Nandi D, Liu X, Winter JL, Aziz TZ, Stein JF (2002b) Deep brain stimulation of the pedunculopontine region in the normal non-human primate. J Clin Neurosci 9(2):170–174

    Article  PubMed  Google Scholar 

  • Noda T, Oka H (1986) Distribution and morphology of tegmental neurons receiving nigral inhibitory inputs in the cat: an intracellular HRP study. J Comp Neurol 244:254–266

    Google Scholar 

  • Nomura S, Mizuno M, Sugimoto T (1980) Direct projections from the pedunculopontine tegmental nucleus to the subthalamic nucleus in the cat. Brain Res 196:223–227

    Article  PubMed  CAS  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Arbizu J, Gimenez-Amaya JM (2002) The basal ganglia and disorders of movement: pathophysiological mechanisms. News Physiol Sci 17:51–55

    PubMed  Google Scholar 

  • Ogura M, Nakao N, Nakai K et al (1997) Firing activity of the basal ganglia and pedunculopontine nucleus in rats with nigrostriatal lesions. Stereotact Funct Neurosurg 67:80–81

    Google Scholar 

  • Olszewski J, Baxter D (eds) (1982) Cytoarchitecture of the human brainstem, 2nd edn. Basel, Karger

    Google Scholar 

  • Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123(Pt 9):1767–1783

    Article  PubMed  Google Scholar 

  • Parkinson J (1817) An essay on the shaking palsy. Sherwood Neely and Jones, London

    Google Scholar 

  • Pereira EA, Aziz TZ (2006a) Parkinson’s disease and primate research: past, present, and future. Postgrad Med J 82(967):293–299

    Article  PubMed  CAS  Google Scholar 

  • Pereira EA, Aziz TZ (2006b) Surgical insights into Parkinson’s disease. J R Soc Med 99(5):238–244

    Article  PubMed  Google Scholar 

  • Pereira EA, Muthusamy KA, De Pennington N, Joint CA, Aziz TZ (2008) Deep brain stimulation of the pedunculopontine nucleus in Parkinson’s disease. Preliminary experience at Oxford. Br J Neurosurg 22(Suppl 1):S41–S44

    Article  PubMed  Google Scholar 

  • Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport 16(17):1883–1887

    Article  PubMed  Google Scholar 

  • Reese NB, Garcia Rill E, Skinner RD (1995) The pedunculopontine nucleus–auditory input, arousal and pathophysiology. Prog Neurobiol 47(2):105–133

    Article  PubMed  CAS  Google Scholar 

  • Ring HA, Serra-Mestres J (2002) Neuropsychiatry of the basal ganglia. J Neurol Neurosurg Psychiatry 72(1):12–21

    Article  PubMed  CAS  Google Scholar 

  • Rinne JO, Ma SY, Lee MS, Collan Y, Roytta M (2008) Loss of cholinergic neurons in the pedunculopontine nucleus in Parkinson’s disease is related to disability of the patients. Parkinsonism Relat Disord 14(7):553–557

    Article  PubMed  Google Scholar 

  • Rye DB, Saper CB, Lee HJ, Wainer BH (1987) Pedunculopontine nucleus of the rat: cytoarchitecture, cytochemistry and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 252:483–528

    Google Scholar 

  • Schmeichel AM, Buchhalter LC, Low PA, Parisi JE, Boeve BW, Sandroni P, Benarroch EE (2008) Mesopontine cholinergic neuron involvement in Lewy body dementia and multiple system atrophy. Neurology 70(5):368–373

    Article  PubMed  CAS  Google Scholar 

  • Sherrington CS (1898) Decerebrate rigidity and reflex co-ordination of movements. J Physiol 22:319–332

    PubMed  CAS  Google Scholar 

  • Sofroniew M, Priestley JV, Consolazione A, et al (1985) Cholinergic projections from the midbrain and pons to the thalamus in the rat, identified by combined retrograde tracing and choline acetyltransferase immunocytochemistry. Brain Res 329 (1–2): 213–223

    Google Scholar 

  • Spann BM, Grofova I (1989) Origin of ascending and spinal pathways from the nucleus pedunculopontinus in the rat. J Comp Neurol 283:13–27

    Article  PubMed  CAS  Google Scholar 

  • Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130(Pt 6): 1596–607

    Google Scholar 

  • Steininger TL, Wainer BH, Rye DB (1997) Ultrastructural study of cholinergic and non-cholinergic neurons in the pars compacta of the rat pedunculopontine tegmental nucleus. J Comp Neurol 382:285–301

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto T, Hattori T (1984) Organization and efferent projections of nucleus tegmenti pedunculopontinus pars compacta with special reference to its cholinergic aspects. Neuroscience 11:931–946

    Article  PubMed  CAS  Google Scholar 

  • Thanvi BR, Lo TCN (2004) Long term motor complications of levodopa: clinical features, mechanisms, and management strategies. Postgrad Med J 80:452–458

    Article  PubMed  CAS  Google Scholar 

  • Thevathasan W, Silburn PA, Brooker H, Coyne TJ, Khan S, Gill SS, Aziz TZ, Brown P (2010) The impact of low-frequency stimulation of the pedunculopontine nucleus region on reaction time in parkinsonism. J Neurol Neurosurg Psychiatr 81 (10):1099–1104

    Google Scholar 

  • Zweig RM, Whitehouse PJ, Casanova MF, Walker LC, Jankel WR, Price DL (1987) Loss of pedunculopontine neurons in progressive supranuclear palsy. Ann Neurol 22(1):18–25

    Article  PubMed  CAS  Google Scholar 

  • Zweig RM, Jankel WR, Hedreen JC, Mayeux R, Price DL (1989) The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol 26(1):41–46

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are supported by grants from the UK Medical Research Council, The Norman Collisson Foundation, The Charles Wolfson Charitable Trust and Oxford Comprehensive Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erlick A. C. Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, E.A.C., Nandi, D., Jenkinson, N. et al. Pedunculopontine stimulation from primate to patient. J Neural Transm 118, 1453–1460 (2011). https://doi.org/10.1007/s00702-011-0631-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-011-0631-8

Keywords

Navigation