Skip to main content

Advertisement

Log in

Migraine is a neuronal disease

  • Basic Neurosciences, Genetics and Immunology - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Migraine is a common, paroxysmal, highly disabling primary headache disorder with a genetic background. The primary cause and the origin of migraine attacks are enigmatic. Numerous clinical and experimental results suggest that activation of the trigeminal system (TS) is crucial in its pathogenesis, but the primary cause of this activation is not fully understood. Since activation of the peripheral and central arms of the TS might be related to cortical spreading depression and to the activity of distinct brainstem nuclei (e.g. the periaqueductal grey), we conclude that migraine can be explained as an altered function of the neuronal elements of the TS, the brainstem, and the cortex, the centre of this process comprising activation of the TS. In light of our findings and the literature data, therefore, we can assume that migraine is mainly a neuronal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    PubMed  CAS  Google Scholar 

  • Akerman S, Goadsby PJ (2005) Topiramate inhibits cortical spreading depression in rat and cat: impact in migraine aura. Neuroreport 16:1383–1387

    PubMed  CAS  Google Scholar 

  • Alkondon M, Pereira EF, Yu P (2004) Targeted deletion of the kynurenine aminotransferase ii gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via alpha7 nicotinic receptors in the hippocampus. J Neurosci 24:4635–4648

    PubMed  CAS  Google Scholar 

  • Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244

    PubMed  CAS  Google Scholar 

  • Anthony M, Hinterberger H, Lance JW (1969) The possible relationship of serotonin of the migraine syndrome. Res Clin Stud Headache 2:29–59

    CAS  Google Scholar 

  • Anzai M, Suzuki Y, Takayasu M (1995) Vasorelaxant effect of PACAP-27 on canine cerebral arteries and rat intracerebral arterioles. Eur J Pharmacol 285:173–179

    PubMed  CAS  Google Scholar 

  • Arulmani U, Maassenvandenbrink A, Villalon CM, Saxena PR (2004) Calcitonin gene-related peptide and its role in migraine pathophysiology. Eur J Pharmacol 500:315–330

    PubMed  CAS  Google Scholar 

  • Aurora SK (2009) Is chronic migraine one end of a spectrum of migraine or a separate entity? Cephalalgia 29:597–605

    PubMed  CAS  Google Scholar 

  • Ayata C, Jin H, Kudo C, Dalkara T, Moskowitz MA (2006) Suppression of cortical spreading depression in migraine prophylaxis. Ann Neurol 59:652–661

    PubMed  CAS  Google Scholar 

  • Bartsch T, Goadsby PJ (2002) Stimulation of the greater occipital nerve induces increased central excitability of dural afferent input. Brain 125:1496–1509

    PubMed  Google Scholar 

  • Bartsch T, Goadsby PJ (2003) Increased responses in trigeminocervical nociceptive neurons to cervical input after stimulation of the dura mater. Brain 126:1801–1813

    PubMed  CAS  Google Scholar 

  • Bartsch T, Goadsby PJ (2005) Anatomy and physiology of pain referral patterns in primary and cervicogenic headache disorders. Headache Curr 2:42–48

    Google Scholar 

  • Bartsch T, Knight YE, Goadsby PJ (2004) Activation of 5-HT(1B/1D) receptor in the periqueductal gray inhibits nociception. Ann Neurol 56:371–381

    PubMed  CAS  Google Scholar 

  • Basarsky TA, Duffy SN, Andrew RD, MacVicar BA (1998) Imaging spreading depression and associated intracellular calcium waves in brain slices. J Neurosci 18:7189–7199

    PubMed  CAS  Google Scholar 

  • Basarsky TA, Feighan D, MacVicar BA (1999) Glutamate release through volume-activated channels during spreading depression. J Neurosci 19:6439–6445

    PubMed  CAS  Google Scholar 

  • Basbaum AJ, Clanton CH, Fields HL (1978) Three bulbospinal pathways from the rostral medulla of the cat: an autoradiographic study of pain-modulating systems. J Comp Neurol 178:209–224

    PubMed  CAS  Google Scholar 

  • Bates E, Nikai T, Brennan K, Fu YH, Charles A, Basbaum A, Ptáček L, Ahn A (2009) Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia. doi:10.1111/j.1468-2982.2009.01864

  • Behbehani MM, Fields HL (1979) Evidence that an excitatory connection between periaqueductal gray and the nucleus raphe magnus mediates stimulation-produced analgesia. Brain Res 170:85–93

    PubMed  CAS  Google Scholar 

  • Bereiter DA, Bereiter DF, Hathaway CB (1996) The NMDA receptor antagonist MK-801 reduces Fos-like immunoreactivity in central trigeminal neurons and blocks select endocrine and autonomic responses to corneal stimulation in the rat. Pain 64:179–189

    PubMed  CAS  Google Scholar 

  • Bigal ME, Rapoport AM, Sheftell FD, Tepper SJ (2002) New migraine preventive options: an update with pathophysiological considerations. Rev Hosp Clin Fac Med Sao Paulo 54:293–298

    Google Scholar 

  • Bigal ME, Rapoport A, Sheftell F, Tepper E, Tepper SJ (2008) Memantine in the preventive treatment of refractory migraine. Headache 48:1337–1342

    PubMed  Google Scholar 

  • Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8:136–142

    PubMed  CAS  Google Scholar 

  • Bölcskei H, Farkas B, Kocsis P, Tarnawa I (2009) Recent advancements in anti-migraine drug research: focus on attempts to decrease neuronal hyperexcitability. Recent Pat CNS Drug Discov 4:14–36

    PubMed  Google Scholar 

  • Bowyer SM, Aurora KS, Moran JE, Tepley N, Welch KM (2001) Magnetoencephalographic fields from patients with spontaneous and induced migraine aura. Ann Neurol 50:582–587

    PubMed  CAS  Google Scholar 

  • Burstein R, Cutrer FM, Yarnitsky D (2000a) The development of cutaneous allodynia during a migraine attack: clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain 123:1703–1709

    PubMed  Google Scholar 

  • Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil BJ, Bajwa ZH (2000b) An association between migraine and cutaneous allodynia. Ann Neurol 47:614–624

    PubMed  CAS  Google Scholar 

  • Busija DW, Bari F, Domoki F, Horiguchi T, Shimizu K (2008) Mechanisms involved in the cerebrovascular dilator effects of cortical spreading depression. Prog Neurobiol 86:417–433

    Google Scholar 

  • Cabral-Filho JE, Trindade-Filho EM, Guedes RC (1995) Effect of d-fenfluramine on cortical spreading depression in rats. Braz J Med Biol Res 28:347–350

    PubMed  CAS  Google Scholar 

  • Canals S, Makarova I, Lopez-Aguado L, Largo C, Ibarz JM, Herreras O (2005) Longitudinal depolarization gradients along the somatodendritic axis of CA1 pyramidal cells: a novel feature of spreading depression. J Neurophysiol 94:943–951

    PubMed  CAS  Google Scholar 

  • Cardell LO, Uddman R, Sundler F (1991) Pituitary adenylate cyclase activating peptide (PACAP) in guinea-pig lung: distribution and dilatory effects. Regul Pept 36:379–389

    PubMed  CAS  Google Scholar 

  • Charles A (1998) Intercellular calcium waves in glia. Glia 24:39–49

    PubMed  CAS  Google Scholar 

  • Charles A (2007) Links between cortical spreading depression and migraine pain. Cephalalgia 27:575–576

    Google Scholar 

  • Chen G, Gao W, Reinert KC, Popa LS, Hendrix CM, Ross ME, Ebner TJ (2005) Involvement of Kv1 potassium channels in spreading acidification and depression in the cerebellar cortex. J Neurophysiol 94:1287–1298

    PubMed  CAS  Google Scholar 

  • Chuquet J, Hollender L, Nimchinsky E (2007) High-resolution in vivo imaging of the neurovascular unit during spreading depression. J Neurosci 27:4036–4044

    PubMed  CAS  Google Scholar 

  • Classey JD, Knight YE, Goadsby PJ (2001) The NMDA receptor antagonist MK-801 reduces Fos-like immunoreactivity within the trigeminocervicalis complex following superior sagittal sinus stimulation in the cat. Brain Res 907:117–124

    PubMed  CAS  Google Scholar 

  • Cropper EC, Eisenman JS, Azmitis EC (1984) 5-HT-immunoreactive fibers in the trigeminal nuclear complex of the rat. Exp Brain Res 55:515–522

    PubMed  CAS  Google Scholar 

  • Cunningham RF, Israili ZH, Dayton PG (1981) Clinical pharmacokinetics of probenecid. Clin Pharmacokinet 6:135–151

    PubMed  CAS  Google Scholar 

  • Davidoff RA (1995) Migraine: manifestations, pathogenesis and management. Davis Co, Philadelphia, pp 115–180

  • de Fusco M, Marconi R, Silvestri L, Atorino L, Rampoldi L, Morgante L, Ballabio A, Aridon P, Casari G (2003) Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet 33:192–196

    PubMed  Google Scholar 

  • de Tommaso M, Libro G, Guido M, Difruscolo O, Losito L, Sardaro M, Cerbo R (2004) Nitroglycerin induces migraine headache and central sensitization phenomena in patients with migraine without aura: a study of laser evoked potentials. Neurosci Lett 363:272–275

    PubMed  Google Scholar 

  • Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B, Biskup S, Ferrari MD, Herzog J, van den Maagdenberg AM, Pusch M, Strom TM (2005) Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366:371–377

    PubMed  CAS  Google Scholar 

  • Dickinson L, Aramori I, McCulloch J, Sharkey J, Finlayson K (2006) A systematic comparison of intracellular cyclic AMP and calcium signalling highlights complexities in human VPAC/PAC receptor pharmacology. Neuropharmacology 51:1086–1098

    Google Scholar 

  • Diener HC (1997) Positron emission tomography studies in headache. Headache 37:622–625

    PubMed  CAS  Google Scholar 

  • Diener HC (1999) How can PET scans help us understand headache mechanisms? Cephalalgia 23:15–18

    Google Scholar 

  • Diener HC, May A (1996) Positron emission tomography studies in acute migraine attacks. In: Sandler M, Ferrari M, Harnett S (eds) Migraine: pharmacology, genetics. Chapman and Hall, London, pp 109–116

    Google Scholar 

  • Dodick D, Silberstein S (2006) Central sensitization theory of migraine: clinical implications. Headache 46:S182–S191

    PubMed  Google Scholar 

  • dos Santos AA, Pinheiro PC, de Lima DS, Ozias MG, de Oliveira MB, Guimarães NX, Guedes RC (2006) Fluoxetine inhibits cortical spreading depression in weaned and adult rats suckled under favorable and unfavorable lactation conditions. Exp Neurol 200:275–282

    PubMed  Google Scholar 

  • Dreier JP, Woitzik J, Fabricius M, Bhatia R, Major S, Drenckhahn C, Lehmann TN, Sarrafzadeh A, Willumsen L, Hartings JA, Sakowitz OW, Seemann JH, Thieme A, Lauritzen M, Strong AJ (2006) Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain 129:3224–3237

    PubMed  Google Scholar 

  • Edelmayer RM, Vanderah TW, Majuta L, Zhang ET, Fioravanti B, Felice M, Chichorro JG, Ossipov MH, King T, Lai J, Kori SH, Nelsen AC, Cannon KE, Heinricher MM, Porreca F (2009) Medullary pain facilitating neurons mediate allodynia in headache-related pain. Ann Neurol 65:184–193

    PubMed  CAS  Google Scholar 

  • Edvinsson L (2003) New therapeutic target in primary headaches–blocking the CGRP receptor. Expert Opin Ther Targets 7:377–383

    PubMed  CAS  Google Scholar 

  • Edvinsson L (2006) Neuronal signal substances as biomarkers of migraine. Headache 46:1088–1094

    PubMed  Google Scholar 

  • Edvinsson L (2008a) CGRP blockers in migraine therapy: where do they act? Br J Pharmacol 155:967–969

    PubMed  CAS  Google Scholar 

  • Edvinsson L (2008b) CGRP-receptor antagonism in migraine treatment. Lancet 372:2089–2090

    PubMed  Google Scholar 

  • Edvinsson L, Goadsby PJ (1995) Neuropeptides in the cerebral circulation: relevance to headache. Cephalalgia 15:272–276

    PubMed  CAS  Google Scholar 

  • Edvinsson L, Uddman R (1981) Adrenergic, cholinergic and peptidergic nerve fibers in dura mater-involvement in headache? Cephalalgia 1:175–179

    PubMed  CAS  Google Scholar 

  • Edvinsson L, Uddman R (2005) Neurobiology in primary headaches. Brain Res Rev 48:438–456

    PubMed  Google Scholar 

  • Eikermann-Haerter K, Dilekoz E, Kudo C, Savitz SI, Waeber C, Baum MJ, Ferrari MD, van den Maagdenberg AM, Moskowitz MA, Ayata C (2009) Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J Clin Invest 119:99–109

    PubMed  CAS  Google Scholar 

  • Entrena A, Camacho ME, Carrion MD, Lopez-Cara LC, Velasco G, Leon J, Escames G, cuna-Castroviejo D, Tapias V, Gallo MA, Vivo A, Espinosa A (2005) Kynurenamines as neural nitric oxide synthase inhibitors. J Med Chem 48:8174–8181

    PubMed  CAS  Google Scholar 

  • Fabricius M, Jensen LH, Lauritzen M (1993) Microdialysis of interstitial amino acids during spreading depression and anoxic depolarization in rat neocortex. Brain Res 612:61–69

    PubMed  CAS  Google Scholar 

  • Faria LC, Mody I (2004) Protective effect of ifenprodil against spreading depression in the mouse entorhinal cortex. J Neurophysiol 92:2610–2614

    PubMed  CAS  Google Scholar 

  • Ferrari MD, Odink J, Tapparelli C, van Kempen GMJ, Pennings EJM, Bruyn GW (1989) Serotonin metabolism in migraine. Neurology 39:1239–1242

    PubMed  CAS  Google Scholar 

  • Ferrari A, Spaccapelo L, Pinetti D, Tacchi R, Bertolini A (2009) Effective prophylactic treatments of migraine lower plasma glutamate levels. Cephalalgia 29:423–429

    PubMed  CAS  Google Scholar 

  • Fields HL, Basbaum AI (1999) Central nervous system mechanisms of pain modulation. In: Wall PED, Melzack R (eds) Textbook of pain. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Fishman P, Black L (1999) Indirect costs of migraine in a managed care population. Cephalalgia 19:50–57

    PubMed  CAS  Google Scholar 

  • Fricke B, Andres KH, Von During M (2001) Nerve fibers innervating the cranial and spinal meninges: morphology of nerve fiber terminals and their structural integration. Microsc Res Tech 53:96–105

    PubMed  CAS  Google Scholar 

  • Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56:2007–2017

    PubMed  CAS  Google Scholar 

  • Garry MG, Walton LP, Davis MA (2000) Capsaicin-evoked release of immunoreactive calcitonin gene-related peptide from the spinal cord is mediated by nitric oxide but not by cyclic GMP. Brain Res 861:208–219

    PubMed  CAS  Google Scholar 

  • Gerth WC, Carides GW, Dasbach EJ, Visser WH, Santanello NC (2001) The multinational impact of migraine symptoms on healthcare utilisation and work loss. Pharmacoeconomics 19:197–206

    PubMed  CAS  Google Scholar 

  • Goadsby PJ (1998) A triptan too far? J Neurol Neurosurg Psychol 64:143–147

    CAS  Google Scholar 

  • Goadsby PJ (2001) Migraine, aura, and cortical spreading depression: why are we still talking about it? Ann Neurol 49:4–6

    PubMed  CAS  Google Scholar 

  • Goadsby PJ (2005) Migraine, allodynia, sensitisation and all of that. Eur Neurol 53:10–16

    PubMed  Google Scholar 

  • Goadsby PJ (2007) Recent advances in understanding migraine mechanisms, molecules and therapeutics. Trends Mol Med 13:39–44

    PubMed  CAS  Google Scholar 

  • Goadsby PJ, Classey JD (2000) Glutamatergic transmission in the trigeminal nucleus assessed with local blood flow. Brain Res 875:119–124

    PubMed  CAS  Google Scholar 

  • Goadsby PJ, Edvinsson L (1993) The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 33:48–56

    PubMed  CAS  Google Scholar 

  • Goadsby PJ, Edvinsson L, Ekman R (1988) Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol 23:193–196

    PubMed  CAS  Google Scholar 

  • Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 18:183–187

    Google Scholar 

  • Goadsby PJ, Lipton RB, Ferrari MD (2002) Migraine-current understanding and treatment. N Engl J Med 346:257–270

    PubMed  CAS  Google Scholar 

  • Goadsby PJ, Charbit AR, Andreou AP, Akerman S, Holland PR (2009a) Neurobiology of migraine. Neuroscience 161:327–341

    PubMed  CAS  Google Scholar 

  • Goadsby PJ, Ferrari MD, Csanyi A, Olesen J, Mills JG (2009b) Tonabersat TON-01–05 Study Group. Randomized, double-blind, placebo-controlled, proof-of-concept study of the cortical spreading depression inhibiting agent tonabersat in migraine prophylaxis. Cephalalgia 7:742–750

    Google Scholar 

  • Gulbenkian S, Uddman R, Edvinsson L (2001) Neuronal messengers in the human cerebral circulation. Peptides 22:995–1007

    PubMed  CAS  Google Scholar 

  • Gursoy-Ozdemir Y, Qiu J, Matsuoka N, Bolay H, Bermpohl D, Jin H, Wang X, Rosenberg GA, Lo EH, Moskowitz MA (2004) Cortical spreading depression activates and upregulates MMP-9. J Clin Invest 113:1447–1455

    PubMed  CAS  Google Scholar 

  • Hadjikhani N, Sanchez Del Rio M, Wu O, Schwartz D, Bakker D, Fischl B, Kwong KK, Cutrer FM, Rosen BR, Tootell RB, Sorensen AG, Moskowitz MA (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA 98:4687–4692

    PubMed  CAS  Google Scholar 

  • Haley JE, Sullivan AF, Dickenson AH (1990) Evidence for spinal N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat. Brain Res 518:218–226

    PubMed  CAS  Google Scholar 

  • Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26:81–89

    PubMed  CAS  Google Scholar 

  • Hasbak P, Opgaard OS, Eskesen K, Schifter S, Arendrup H, Longmore J, Edvinsson L (2003) Investigation of CGRP receptors and peptide pharmacology in human coronary arteries. Characterization with a nonpeptide antagonist. J Pharmacol Exp Ther 304:326–333

    PubMed  CAS  Google Scholar 

  • Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    PubMed  CAS  Google Scholar 

  • Headache Classification Committee of the International Headache Society (2004) The International Classification of Headache Disorders. Cephalalgia 24:1–160

    Google Scholar 

  • Henning EC, Meng X, Fisher M, Sotak CH (2005) Visualization of cortical spreading depression using manganese-enhanced magnetic resonance imaging. Magn Reson Med 53:851–857

    PubMed  Google Scholar 

  • Hill RG, Salt TE (1982) An ionophoretic study of the responses of rat caudal trigeminal nucleus neurones to non-noxious mechanical sensory stimuli. J Physiol 327:65–78

    PubMed  CAS  Google Scholar 

  • Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473

    PubMed  CAS  Google Scholar 

  • Ho TW, Mannix LK, Pan X, Assaid C, Furtek C, Jones CJ, Lines CR, Rapoport AM (2008) Randomized controlled trial of an oral CGRP receptor antagonist, MK-0974, in acute treatment of migraine. Neurology 70:1304–1312

    PubMed  CAS  Google Scholar 

  • Ingram SL, Williams JT (1996) Modulation of the hyperpolarization-activated current (Ih) by cyclic nucleotides in guinea-pig primary afferent neurons. J Physiol 492:97–106

    PubMed  CAS  Google Scholar 

  • Iversen HK, Olesen J (1996) Headache induced by a nitric oxide donor (nitroglycerin) responds to sumatriptan. A human model for development of migraine drugs. Cephalalgia 16:412–418

    PubMed  CAS  Google Scholar 

  • Jensen R (2000) Central and peripheral mechanisms in migraine: a neurophysiological approach. Funct Neurol 15:63–67

    PubMed  Google Scholar 

  • Jeong HJ, Chenu D, Johnson EE, Connor M, Vaughan CW (2008) Sumatriptan inhibits synaptic transmission in the rat midbrain periaqueductal grey. Mol Pain 4:54

    PubMed  Google Scholar 

  • Juhász G, Zsombok T, Modos EA, Olajos S, Jakab B, Németh J, Szolcsányi J, Vitrai J, Bagdy G (2003) NO-induced migraine attack: strong increase in plasma calcitonin gene-related peptide (CGRP) concentration and negative correlation with platelet serotonin release. Pain 106:461–470

    PubMed  Google Scholar 

  • Juhász G, Zsombok T, Jakab B, Németh J, Szolcsányi J, Bagdy G (2005) Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack. Cephalalgia 25:179–183

    PubMed  Google Scholar 

  • Kaube H, Goadsby PJ (1994) Anti-migraine compounds fail to modulate the propagation of cortical spreading depression in the cat. Eur Neurol 34:30–35

    PubMed  CAS  Google Scholar 

  • Keller JT, Marfurt CF (1991) Peptidergic and serotonergic innervation of rat dura mater. J Comp Neurol 309:515–534

    PubMed  CAS  Google Scholar 

  • Kelman L (2004) The aura: a tertiary care study of 952 migraine patients. Cephalalgia 24:728–734

    PubMed  CAS  Google Scholar 

  • Kerr FWL, Olafson RA (1961) Trigeminal and cervical volleys. Arch Neurol 5:69–76

    Google Scholar 

  • Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with N-methyl-d-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52:1319–1328

    PubMed  CAS  Google Scholar 

  • Knight YE, Goadsby PJ (2001) The periaqueductal gray matter modulates trigeminovascular input: a role in migraine? Neuroscience 106:793–800

    PubMed  CAS  Google Scholar 

  • Knight YE, Bartsch T, Kaube H, Goadsby PJ (2002) P/Q-type calcium-channel blockade in the periaqueductal gray facilitates trigeminal nociception: a functional genetic link for migraine? J Neurosci 22:RC213

    Google Scholar 

  • Knyihar-Csillik E, Mihaly A, Krisztin-Peva B, Robotka H, Szatmari I, Fulop F, Toldi J, Csillik B, Vecsei L (2008) The kynurenate analog SZR-72 prevents the nitroglycerol-induced increase of c-fos immunoreactivity in the rat caudal trigeminal nucleus: comparative studies of the effects of SZR-72 and kynurenic acid. Neurosci Res 61:429–432

    PubMed  CAS  Google Scholar 

  • Knyihár-Csillik E, Tajti J, Samsam M, Sáry Gy, Vécsei L (1995) Electrical stimulation of the Gasserian ganglion induces structural alterations of calcitonin gene-related peptide-immunoreactive perivascular sensory nerve terminals in the rat cerebral dura mater: a possible model of migraine headache. Neurosci Lett 184:189–192

    PubMed  Google Scholar 

  • Knyihár-Csillik E, Chadaide Z, Okuno E, Krisztin-Péva B, Toldi J, Varga C, Molnár A, Csillik B, Vécsei L (2004) Kynurenine aminotransferase in the supratentorial dura mater of the rat: effect of stimulation of the trigeminal ganglion. Exp Neurol 186:242–247

    PubMed  Google Scholar 

  • Knyihár-Csillik E, Toldi J, Krisztin-Péva B, Chadaide Z, Németh H, Fenyo R, Vécsei L (2007a) Prevention of electrical stimulation-induced increase of c-fos immunoreaction in the caudal trigeminal nucleus by knyurenine combined with probenecid. Neurosci Lett 418:122–126

    PubMed  Google Scholar 

  • Knyihár-Csillik E, Toldi J, Mihály A, Krisztin-Péva B, Chadaide Z, Németh H, Fenyo R, Vécsei L (2007b) Kynurenine in combination with probenecid mitigates the stimulation-induced increase of c-fos immunoreactivity of the rat caudal trigeminal nucleus in an experimental migraine model. J Neural Transm 114:417–421

    PubMed  Google Scholar 

  • Kolaj M, Cerne R, Cheng G, Brickey DA, Randić M (1994) Alpha subunit of calcium/calmodulin-dependent protein kinase enhances excitatory amino acid and synaptic responses of rat spinal dorsal horn neurons. J Neurophysiol 72:2525–2531

    PubMed  CAS  Google Scholar 

  • Kovács K, Kapócs G, Widerlöv E, Ekman R, Vécsei L, Jelencsik I, Csanda E (1991) Suboccipital cerebrospinal fluid and plasma concentrations of corticotropin-releasing hormone and calcitonin gene-related peptide in patients with common migraine. Nord Psykiatr Tidsskr 45:11–16

    Google Scholar 

  • Kunkler PE, Kraig RP (2003) Hippocampal spreading depression bilaterally activates the caudal trigeminal nucleus in rodents. Hippocampus 13:835–844

    PubMed  Google Scholar 

  • Kunkler PE, Kraig RP (2004) P/Q Ca2+ channel blockade stops spreading depression and related pyramidal neuronal Ca2+ rise in hippocampal organ culture. Hippocampus 14:356–367

    PubMed  CAS  Google Scholar 

  • Lambert GA, Zagami AS (2009) The mode of action of migraine triggers: a hypothesis. Headache 49:253–275

    PubMed  Google Scholar 

  • Lance JW, Lambert GA, Goadsby PJ, Duckworth JW (1983) Brain stem influences on the cephalic circulation: experimental data from cat and monkey of relevance to the mechanism of migraine. Headache 23:258–265

    PubMed  CAS  Google Scholar 

  • Lance JW, Lambert GA, Goadsby PJ, Zagami AS (1990) Contribution of experimental studies to understanding the pathophysiology of migraine. In: Sandler M, Collins GM (eds) Migraine: a spectrum of ideas. Oxfrod University Press, Oxford, pp 21–39

  • Lashley KS (1941) Patterns of cerebral integration indicated by the scotomas of migraine. Arch Neurol Psychiatry 46:331–339

    Google Scholar 

  • Lassen LH, Ashina M, Christiansen I, Ulrich V, Olesen J (1997) Nitric oxide synthase inhibition in migraine. Lancet 349:401–402

    PubMed  CAS  Google Scholar 

  • Lassen LH, Haderslev PA, Jacobsen VB, Iversen HK, Sperling B, Olesen J (2002) CGRP may play a causative role in migraine. Cephalalgia 22:54–61

    PubMed  CAS  Google Scholar 

  • Lassen LH, Jacobsen VB, Haderslev PA, Sperling B, Iversen HK, Olesen J, Tfelt-Hansen P (2008) Involvement of calcitonin gene-related peptide in migraine: regional cerebral blood flow and blood flow velocity in migraine patients. J Headache Pain 9:151–157

    PubMed  CAS  Google Scholar 

  • Lauritzen M (1994) Pathophysiology of the migraine aura leading depression theory. Brain 117:199–210

    PubMed  Google Scholar 

  • Lauritzen M, Hansen A (1992) The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J Cereb Blood Flow Metab 12:223–229

    PubMed  CAS  Google Scholar 

  • Leao AAP (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7:391–396

    Google Scholar 

  • Lennerz JK, Ruhle V, Ceppa EP, Neuhuber WL, Bunnet NW, Grady EF (2008) Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution. J Comp Neurol 507:1277–1299

    PubMed  CAS  Google Scholar 

  • Leonardi M, Steiner TJ, Scher AT, Lipton RB (2005) The global burden of migraine: measuring disability in headache disorders with WHO’s Classification of Functioning, disability and Health (ICF). J Headache Pain 6:429–440

    PubMed  Google Scholar 

  • Lipton RB, Stewart WF, Diamond S, Diamond ML, Reed M (2001) Prevalence and burden of migraine in the United States: data from the American Migraine Study II. Headache 41:646–657

    PubMed  CAS  Google Scholar 

  • Longoni M, Ferrarese C (2006) Inflammation and excitotoxicity: role in migraine pathogenesis. Neurol Sci 27:S107–S110

    PubMed  Google Scholar 

  • Lovick TA, Wolstencroft JH (1983) Projections from brain stem nuclei to the spinal trigeminal nucleus in the cat. Neuroscience 9:411–420

    PubMed  CAS  Google Scholar 

  • Marchi M, Risso F, Viola C, Cavazzani P, Raiteri M (2002) Direct evidence that release-stimulating alpha7 nicotinic cholinergic receptors are localized on human and rat brain glutamatergic axon terminals. J Neurochem 80:1071–1078

    PubMed  CAS  Google Scholar 

  • Martella G, Costa C, Pisani A, Cupini LM, Bernardi G, Calabresi P (2008) Antiepileptic drugs on calcium currents recorded from cortical and PAG neurons: therapeutic implications for migraine. Cephalalgia 28:1315–1326

    PubMed  CAS  Google Scholar 

  • Martinez F, Castillo J, Rodriguez JR, Leira R, Noya M (1993) Neuroexcitatory amino acid levels in plasma and cerebrospinal fluid during migraine attacks. Cephalalgia 13:89–93

    PubMed  CAS  Google Scholar 

  • Mayberg M, Langers RS, Zervos NT, Moskowitz MA (1981) Perivascular meningeal projections from cat trigeminal ganglia: possible pathway for vascular headache in man. Science 213:228–230

    PubMed  CAS  Google Scholar 

  • Menken M, Munsat TL, Toole JF (2000) The global burden of disease study-implications for neurology. Arch Neurol 57:418–420

    PubMed  CAS  Google Scholar 

  • Messlinger K (2009) Migraine: when and how does the pain originate? Exp Brain Res 196:179–193

    PubMed  Google Scholar 

  • Mitsikostas DD, Sanchez del Rio M, Waeber C (1998) The NMDA receptor antagonist MK-800 reduces capsaicin induced c-fos expression within rat trigeminal nucleus caudalis. Pain 76:239–248

    PubMed  CAS  Google Scholar 

  • Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MH, Coy DH (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574

    PubMed  CAS  Google Scholar 

  • Moller K, Zhang YZ, Hakanson R, Luts A, Sjolund B, Uddman R, Sundler F (1993) Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: immunocytochemical and immunochemical evidence. Neuroscience 57:725–732

    PubMed  CAS  Google Scholar 

  • Morris RG, Panico M, Etienne T, Tippins J, Girgis SI, McIntyre I (1984) Isolation and characterization of human calcitonin gene-related peptide. Nature 308:746–748

    PubMed  CAS  Google Scholar 

  • Morris RG, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-d-aspartate receptor antagonist, AP5. Nature 319:774–776

    PubMed  CAS  Google Scholar 

  • Moskowitz MA (2008) Defining a pathway to discovery from bench to bedside: the trigeminovascular system and sensitization. Headache 48:688–690

    PubMed  Google Scholar 

  • Moskowitz MA, Nozaki K, Kraig RP (1993) Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci 13:1167–1177

    PubMed  CAS  Google Scholar 

  • Moskowitz MA, Bolay H, Dalkara T (2004) Deciphering migraine mechanisms: clues from familial hemiplegic migraine genotypes. Ann Neurol 55:276–280

    PubMed  CAS  Google Scholar 

  • Obrenovitch TP, Urenjak J, Wang M (2002) Nitric oxide formation during cortical spreading depression is critical for rapid subsequent recovery of ionic homeostasis. J Cereb Blood Flow Metab 22:680–688

    PubMed  CAS  Google Scholar 

  • Ogi K, Kimura C, Onda H, Arimura A, Fujino M (1990) Molecular cloning and characterization of cDNA for the precursor of rat pituitary adenylate cyclase activating polypeptide (PACAP). Biochem Biophys Res Commun 173:1271–1279

    PubMed  CAS  Google Scholar 

  • Ohkubo S, Kimura C, Ogi K, Okazaki K, Hosoya M, Onda H, Miyata A, Arimura A, Fujino M (1992) Primary structure and characterization of the precursor to human pituitary adenylate cyclase activating polypeptide. DNA Cell Biol 11:21–30

    PubMed  CAS  Google Scholar 

  • Olesen J, Saxena PR (1992) 5-Hydroxytryptamine mechanisms in primary headaches. Raven Press, New York

    Google Scholar 

  • Olesen J, Thomsen LL, Lassen LH, Olesen IJ (1995) The nitric oxide hypothesis of migraine and other vascular headaches. Cephalalgia 15:94–100

    PubMed  CAS  Google Scholar 

  • Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U, Pollentier S, Lesko LM (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 350:1104–1110

    PubMed  CAS  Google Scholar 

  • Olesen J, Burstein R, Ashina M, Tfelt-Hansen P (2009) Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol 8:679–690

    PubMed  Google Scholar 

  • Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, Ferrari MD, Frants RR (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87:543–552

    PubMed  CAS  Google Scholar 

  • Oshinsky ML, Luo J (2006) Neurochemistry of trigeminal activation in an animal model of migraine. Headache 46:S39–S44

    PubMed  Google Scholar 

  • Palkovits M, Jacobowitz DM (1974) Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. II. Hindbrain (mesencephalon, rhombencephalon). J Comp Neurol 157:29–42

    PubMed  CAS  Google Scholar 

  • Panconesi A, Bartoozzi ML, Guidi L (2009) Migraine pain: reflections against vasodilatation. J Headache Pain 10:317–325

    PubMed  Google Scholar 

  • Pardutz A, Krizbai I, Multon S, Vecsei L, Schoenen J (2000) Systemic nitroglycerin increases nNOS levels in rat trigeminal nucleus caudalis. Neuroreport 11:3071–3075

    PubMed  CAS  Google Scholar 

  • Pardutz A, Multon S, Malgrange B, Parducz A, Vécsei L, Schoenen J (2002) Effect of systemic nitroglycerin on CGRP and 5-HT afferents to rat caudal spinal trigeminal nucleus and its modulation by estrogen. Eur J Neurosci 15:1803–1809

    PubMed  CAS  Google Scholar 

  • Pardutz A, Szatmári E, Vécsei L, Schoenen J (2004) Nitroglycerin-induced nNOS increase in rat trigeminal nucleus caudalis is inhibited by systemic administration of lysine acetylsalicylate but not of sumatriptan. Cephalalgia 24:439–445

    PubMed  CAS  Google Scholar 

  • Pardutz A, Hoyk Z, Varga H, Vécsei L, Schoenen J (2007) Oestrogen-modulated increase of calmodulin-dependent protein kinase II (CamKII) in rat spinal trigeminal nucleus after systemic nitroglycerin. Cephalalgia 27:46–53

    PubMed  CAS  Google Scholar 

  • Peeters M, Gunthorpe MJ, Strijbos PJLM, Goldsmith P, Upton N, James MF (2007) Effects of pan- and subtype-selective N-methyl-d-aspartate receptor antagonists on cortical spreading depression in the rat: therapeutic potential for migraine. J Pharmacol Exp Ther 321:564–572

    PubMed  CAS  Google Scholar 

  • Perkins MN, Stone TW (1982) An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res 247:184–187

    PubMed  CAS  Google Scholar 

  • Perkins MN, Stone TW (1985) Actions of kynurenic acid and quinolinic acid in the rat hippocampus in vivo. Exp Neurol 88:570–579

    PubMed  CAS  Google Scholar 

  • Peters O, Schipke CG, Hashimoto Y, Kettenmann H (2003) Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex. J Neurosci 23:9888–9896

    PubMed  CAS  Google Scholar 

  • Petzold GC, Windmuller O, Haack S, Major S, Buchheim K, Megow D, Gabriel S, Lehmann TN, Drenckhahn C, Peters O, Meierkord H, Heinemann U, Dirnagl U, Dreier JP (2005) Increased extracellular K+ concentration reduces the efficacy of N-methyl-d-aspartate receptor antagonists to block spreading depression-like depolarizations and spreading ischemia. Stroke 36:1270–1277

    PubMed  CAS  Google Scholar 

  • Pietrobon D, Striessing J (2003) Neurobiology of migraine. Nat Rev Neurosci 4:386–398

    PubMed  CAS  Google Scholar 

  • Piovesan EJ, Kowacs PA, Oshinsky ML (2003) Convergence of cervical and trigeminal sensory afferents. Curr Pain Headache Rep 7:377–383

    PubMed  Google Scholar 

  • Rajda C, Tajti J, Komoróczy R, Seres E, Klivényi P, Vécsei L (1999) Amino acids in the saliva of migraine patients. Headache 39:644–649

    PubMed  CAS  Google Scholar 

  • Raskin NH, Hosobuchi Y, Lamb S (1987) Headache may arise from perturbation of the brain. Headache 27:416–420

    PubMed  CAS  Google Scholar 

  • Read SJ, Smith MI, Hunter AJ, Upton N, Parsons AA (2000) SB-220453, a potential novel antimigraine agent, inhibits nitric oxide release following induction of cortical spreading depression in the anaesthetized cat. Cephalalgia 20:92–99

    PubMed  CAS  Google Scholar 

  • Reuter U, Weber JR, Gold L, Arnold G, Wolf T, Dreier J, Lindauer U, Dirnagl U (1998) Perivascular nerves contribute to cortical spreading depression associated hyperemia in rats. Am J Physiol Heart Circ Physiol 274:1979–1987

    Google Scholar 

  • Robotka H, Toldi J, Vécsei L (2008) l-Kynurenine: metabolism and mechanism of neuroprotection. Future Neurol 3:169–188

    CAS  Google Scholar 

  • Rosenfeld MG, Mermod JJ, Amara SG, Swanson LW, Sawchenko PE, Rivier J, Vale WW, Evans RM (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304:129–135

    PubMed  CAS  Google Scholar 

  • Rózsa É, Robotka H, Vécsei L, Toldi J (2008) The Janus-face kynurenic acid. J Neural Transm 115:1087–1091

    PubMed  Google Scholar 

  • Sang CN, Ramadan NM, Wallihan RG, Chappell AS, Freitag FG, Smith TR, Silberstein SD, Johnson KW, Phebus LA, Bleakman D, Ornstein PL, Arnold B, Tepper SJ, Vandenhende F (2004) LY293558, a novel AMPA/GluR5 antagonist, is efficacious and well-tolerated in acute migraine. Cephalalgia 24:596–602

    PubMed  CAS  Google Scholar 

  • Santamaria A, Rios C, Solis-Hernandez F, Ordaz-Moreno J, Gonzalez-Reynoso L, Altagracia M, Kravzov J (1996) Systemic d, l-kynurenine and probenecid pretreatment attenuates quinolinic acid-induced neurotoxicity in rats. Neuropharmacology 35:23–28

    PubMed  CAS  Google Scholar 

  • Sas K, Robotka H, Toldi J, Vécsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239

    PubMed  CAS  Google Scholar 

  • Schock SC, Munyao N, Yakubchyk Y, Sabourin LA, Hakim AM, Ventureyra ECG, Thompson CS (2007) Cortical spreading depression releases ATP into the extracellular space and purinergic receptor activation contributes to the induction of ischemic tolerance. Brain Res 1168:129–138

    PubMed  CAS  Google Scholar 

  • Schoenen J (1997) Acute migraine therapy: the newer drugs. Curr Opin Neurol 10:237–243

    PubMed  CAS  Google Scholar 

  • Schoenen J, Ambrosini A, Sándor PS, Maertens de Noordhout A (2003) Evoked potentials and transcranial magnetic stimulation in migraine: published data and viewpoint on their pathophysiologic significance. Clin Neurophysiol 114:955–972

    PubMed  Google Scholar 

  • Schoonman GG, van der Grond J, Kortmann C, van der Geest RJ, Terwindt GM, Ferrari MD (2008) Migraine headache is not associated with cerebral or meningeal vasodilatation—a 3T magnetic resonance angiography study. Brain 131:2192–2200

    PubMed  CAS  Google Scholar 

  • Schytz HW, Birk S, Wienecke T, Kruuse C, Olesen J, Ashina M (2009) PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain 132:16–25

    PubMed  Google Scholar 

  • Seki Y, Suzuki Y, Baskaya MB, Kano T, Saito K, Takayasu M, Shibuya M, Sugita K (1995) The effects of pituitary adenylate cyclase activating polypeptide on cerebral arteries and vertebral artery blood flow in anesthetized dogs. Eur J Pharmacol 275:259–266

    PubMed  CAS  Google Scholar 

  • Shimizu K, Bari F, Busija DW (2000) Glibenclamide enhances cortical spreading depression-associated hyperemia in the rat. NeuroReport 11:2103–2106

    Google Scholar 

  • Sicuteri F, Testi A, Anselmi B (1961) Biochemical investigations in headache: increase in hydroxyindoleacetic acid excretion during migraine attacks. Int Arch Allergy 19:55–58

    CAS  Google Scholar 

  • Sicuteri F, Del BE, Poggioni M, Bonazzi A (1987) Unmasking latent dysnociception in healthy subjects. Headache 27:180–185

    PubMed  CAS  Google Scholar 

  • Silberstein SD, Lipton RB, Goadsby PJ (1998) Headache in clinical practice. Isis Medical Media, Oxford, pp 41–90

  • Silberstein SD, Schoenen J, Göbel H, Diener HC, Elkind AH, Klapper JA, Howard RA (2009) Tonabersat, a gap-junction modulator: efficacy and safety in two randomized, placebo-controlled, dose-ranging studies of acute migraine. Cephalalgia 29:17–27

    PubMed  Google Scholar 

  • Smith JM, Bradley DP, James MF, Huang CL (2006) Physiological studies of cortical spreading depression. Biol Rev 81:457–481

    PubMed  Google Scholar 

  • Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81:1065–1096

    PubMed  CAS  Google Scholar 

  • Steiner TJ (2005) Lifting the burden: the global campaign to reduce the burden of headache worldwide. J Headache Pain 6:373–377

    PubMed  Google Scholar 

  • Steiner TJ, Scher AI, Stewart WF, Kolodner K, Liberman J, Lipton RB (2003) The prevalence and disability burden of adult migraine in England and their relationships to age, gender and ethnicity. Cephalalgia 23:519–527

    PubMed  CAS  Google Scholar 

  • Stone TW, Mackay GM, Forrest CM, Clark CJ, Darlington LG (2003) Tryptophan metabolites and brain disorders. Clin Chem Lab Med 41:852–859

    PubMed  CAS  Google Scholar 

  • Storer RJ, Goadsby PJ (1999) Trigeminovascular nociceptive transmission involves N-methyl-d-aspartate and non-N-methyl-d-aspartate glutamate receptors. Neuroscience 90:1371–1376

    PubMed  CAS  Google Scholar 

  • Stovner L, Hogen K, Jensen R, Katsarava Z, Lipton R, Scher A (2007) The global burden of headache a documentation of headache prevalence and disability world-wide. Cephalalgia 27:193–210

    PubMed  Google Scholar 

  • Supornsilpchai W, Sanguanrangsirikul S, Maneesri S, Srikiatkhachorn A (2006) Serotonin depletion, cortical spreading depression, and trigeminal nociception. Headache 46:34–39

    PubMed  Google Scholar 

  • Tajti J, Uddman R, Möller S, Sundler F, Edvinsson L (1999) Messenger molecules and receptor mRNA in the human trigeminal ganglion. J Auton Nerv Syst 76:176–183

    PubMed  CAS  Google Scholar 

  • Tajti J, Uddman R, Edvinsson L (2001) Neuropeptide messengers in the migraine generator region of the human brainstem. Cephalalgia 21:96–101

    PubMed  CAS  Google Scholar 

  • Tallaksen-Greene SJ, Young AB, Penney JB, Beitz AJ (1992) Excitatory amino acid binding sites in the trigeminal principal sensory and spinal trigeminal nuclei of the rat. Neurosci Lett 141:79–83

    PubMed  CAS  Google Scholar 

  • Tassorelli C, Joseph SA (1995) Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat. Brain Res 682:167–181

    Google Scholar 

  • Tepper SJ, Rapoport AM, Sheftell FD (2002) Mechanisms of action of the 5-HT1B/1D receptor agonists. Arch Neurol 59:1084–1088

    PubMed  Google Scholar 

  • Tobiasz C, Nicholson C (1982) Tetrodotoxin resistant propagation and extracellular sodium changes during spreading depression in rat cerebellum. Brain Res 241:329–333

    PubMed  CAS  Google Scholar 

  • Uddman R, Goadsby PJ, Jansen J, Edvinsson L (1993) PACAP, a VIP-like peptide: immunohistochemical localization and effect upon cat pial arteries and cerebral blood flow. J Cerebral Blood Flow Metab 13:291–297

    CAS  Google Scholar 

  • Uddman R, Tajti J, Hou M, Sundler F, Edvinsson L (2002) Neuropeptide expression in the human trigeminal nucleus caudalis and in the cervical spinal cord C1 and C2. Cephalalgia 22:112–116

    PubMed  CAS  Google Scholar 

  • Vámos E, Fejes A, Koch J, Tajti J, Fülöp F, Toldi J, Párdutz Á, Vécsei L (2009a) Kynurenate derivative attenuates the nitroglycerin-induced CamKIIα and CGRP expression changes. Headache. doi:10.1111/j.1526-4610.2009.01574.x

  • Vámos E, Párdutz A, Fejes A, Tajti J, Toldi J, Vécsei L (2009b) Modulatory effects of probenecid on the nitroglycerin-induced changes in the rat caudal trigeminal nucleus. Eur J Pharmacol 621:33–37

    PubMed  Google Scholar 

  • Vámos E, Párdutz A, Varga H, Bohár Z, Tajti J, Fülöp F, Toldi J, Vécsei L (2009c) l-Kynurenine combined with probenecid and the novel synthetic kynurenic acid derivative attenuate nitroglycerin-induced nNOS in the rat caudal trigeminal nucleus. Neuropharmacology 57:425–429

    PubMed  Google Scholar 

  • van den Maagdenberg AM, Pietrobon D, Pizzorusso T, Kaja S, Broos LA, Cesetti T, van de Ven RC, Tottene A, van der Kaa J, Plomp JJ, Frants RR, Ferrari MD (2004) A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41:701–710

    PubMed  Google Scholar 

  • Vanmolkot KR, Kors EE, Turk U, Turkdogan D, Keyser A, Broos LA, Kia SK, van den Heuvel JJ, Black DF, Haan J, Frants RR, Barone V, Ferrari MD, Casari G, Koenderink JB, van den Maagdenberg AM (2006) Two de novo mutations in the Na, K-ATPase gene ATP1A2 associated with pure familial hemiplegic migraine. Eur J Hum Genet 14:555–560

    PubMed  CAS  Google Scholar 

  • Vécsei L (ed) (2005) Kynurenines in the brain. From experiments to clinics. Nova, New York

    Google Scholar 

  • Vécsei L, Miller J, MacGarvey U, Beal MF (1992) Kynurenine and probenecid inhibit pentylenetetrazol- and NMDLA-induced seizures and increase kynurenic acid concentrations in the brain. Brain Res Bull 28:233–238

    PubMed  Google Scholar 

  • Vikelis M, Mitsikostas DD (2007) The role of glutamate and its receptors in migraine. CNS Neurol Disord Drug Targets 6:251–257

    PubMed  CAS  Google Scholar 

  • Wahl M, Schilling L, Parsons AA, Kaumann A (1994) Involvement of calcitonin gene-related peptide (CGRP) and nitric oxide (NO) in the pial artery dilatation elicited by cortical spreading depression. Brain Res 637:204–210

    PubMed  CAS  Google Scholar 

  • Weiller C, May A, Limmorth V, Jüptner M, Kaube H, Schayck R, Coenen HH, Diener HC (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1:658–660

    PubMed  CAS  Google Scholar 

  • Welch KM (2005) Brain hyperexcitability: the basis for antiepileptic drugs in migraine prevention. Headache 45:S25–S32

    PubMed  Google Scholar 

  • Welch KM, Nagesh V, Aurora SK, Gelman N (2001) Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache 41:629–637

    PubMed  CAS  Google Scholar 

  • Wimalawansa SJ (1996) Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev 17:533–585

    PubMed  CAS  Google Scholar 

  • Wolff HG (1963) Headache and other head pain. Oxford University Press, New York

    Google Scholar 

  • Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1769

    PubMed  CAS  Google Scholar 

  • Woolf CJ, Thompson SW (1991) The induction and maintenance of central sensitization is dependent on N-methyl-d-aspartic acid receptor activation, implications for the treatment of postinjury pain hypersensitivity states. Pain 44:293–299

    PubMed  CAS  Google Scholar 

  • World Health Organization (2001) The World Health Report 2001. WHO, Geneva

    Google Scholar 

  • Wu Y-J, Boissard CG, Greco C, Gribkoff VK, Harden DG, He H (2003) (S)-N-[1-(3-Morpholin-4-ylphenyl)ethyl]- 3-phenylacrylamide: an orally bioavailable KCNQ2 opener with significant activity in a cortical spreading depression model of migraine. J Med Chem 46:3197–3200

    PubMed  CAS  Google Scholar 

  • Xiong ZQ, Stringer JL (2000) Sodium pump activity, not glial spatial buffering, clears potassium after epileptiform activity induced in the dentate gyrus. J Neurophysiol 83:1443–1451

    PubMed  CAS  Google Scholar 

  • Yokota T (1988) Anatomy and physiology of intra- and extracranial nociceptive afferents and their central projections. In: Olesen J, Edvinsson L (eds) Basic mechanisms of headache. Elsevier, New York

    Google Scholar 

  • Zagami AS, Goadsby PJ, Edvinsson L (1990) Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. 16:69–75

    CAS  Google Scholar 

  • Zagami AS, Edvinsson L, Hoskin KL, Goadsby PJ (1995) Stimulation of the superior sagittal sinus causes extracranial release of PACAP. Cephalalgia 15:109

    Google Scholar 

Download references

Acknowledgments

Teller Ede (NAP-BIO-06-BAYBIOSZ) ETT 026-04, TÁMOP-4.2.2-08/1/2008-0002,cNEUPRO (LSHM-CT-2007-037950).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Vécsei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tajti, J., Párdutz, Á., Vámos, E. et al. Migraine is a neuronal disease. J Neural Transm 118, 511–524 (2011). https://doi.org/10.1007/s00702-010-0515-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0515-3

Keywords

Navigation