Skip to main content
Log in

Antioxidant strategy to rescue synaptosomes from oxidative damage and energy failure in neurotoxic models in rats: protective role of S-allylcysteine

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The functional preservation of nerve endings since the early stages of toxicity in a given damaging insult—either acute or chronic—by means of antioxidant and neuroprotective agents is a primary need to design therapeutic strategies for neurodegenerative disorders, with particular emphasis on those diseases with excitotoxic and depleted energy metabolism components. S-allylcysteine (SAC), a well-known antioxidant agent, was tested as a post-treatment in different in vitro and in vivo neurotoxic models. Quinolinic acid (QUIN) was used as a typical excitotoxic/pro-oxidant inducer, 3-nitropropionic acid (3-NP) was employed as a mitochondrial function inhibitor, and their combination (QUIN + 3-NP) was also evaluated in in vitro studies. For in vitro purposes, increasing concentrations of SAC (10–100 μM) were added to isolated brain synaptosomes at different times (1, 3 and 6 h) after the incubation with toxins (100 μM QUIN, 1 mM 3-NP or the combination of QUIN (21 μM) + 3-NP (166 μM). Thirty minutes later, lipid peroxidation (LP) and mitochondrial dysfunction (MD) were evaluated. For in vivo studies, SAC (100 mg/kg, i.p.) was given to QUIN- or 3-NP-striatally lesioned rats for 7 consecutive days (starting 120 min post-lesion). LP and MD were evaluated 7 days post-lesion in isolated striatal synaptosomes. Circling behavior was also assessed. Our results describe a differential pattern of protection achieved by SAC, mostly expressed in the 3-NP toxic model, in which nerve ending protection was found within the first hours (1 and 3) after the toxic insult started, supporting the concept that the ongoing oxidative damage and energy depletion can be treated during the first stages of neurotoxic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexi T, Hughes PE, Faul RL, Williams CE (1998) 3- Nitropropionic acid’s lethal triplet: cooperative pathways of neurodegeneration. NeuroReport 9:R57–R64

    Article  CAS  PubMed  Google Scholar 

  • Beal MF (2004) Mitochondrial dysfunction and oxidative damage in Alzheimer’s and Parkinson’s diseases and coenzyme Q10 as a potential treatment. J Bioenerg Biomembr 36:381–386

    Article  CAS  PubMed  Google Scholar 

  • Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321:168–171

    Article  CAS  PubMed  Google Scholar 

  • Behan WM, McDonald M, Darlington LG, Stone TW (1999) Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol 128:1754–1760

    Article  CAS  PubMed  Google Scholar 

  • Binienda Z, Virmani A, Przybyla-Zawislak B, Schmued L (2004) Neuroprotective effect of l-carnitine in the 3-nitropropionic acid (3-NPA)-evoked neurotoxicity in rats. Neurosci Lett 367:264–267

    Article  CAS  PubMed  Google Scholar 

  • Brouillet E, Jenkins BG, Hyman BT, Ferrante RJ, Kowall NW, Srivastava R, Roy DS, Rosen BR, Beal MF (1993) Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J Neurochem 60:356–359

    Article  CAS  PubMed  Google Scholar 

  • Brouillet E, Condé F, Beal MF, Hantraye P (1999) Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol 59:427–468

    Article  CAS  PubMed  Google Scholar 

  • Chauhan NB (2006) Effect of aged garlic extract on APP processing and tau phosphorylation in Alzheimer’s transgenic model Tg2576. J Ethnopharmacol 108:385–394 (Epub 13 June 2006)

    Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  CAS  PubMed  Google Scholar 

  • Dairam A, Fogel R, Daya S, Limson JL (2008) Antioxidant and iron-binding properties of curcumin, capsaicin, and S-allylcysteine reduce oxidative stress in rat brain homogenate. J Agric Food Chem 56:3350–3356

    Article  CAS  PubMed  Google Scholar 

  • Dinkova-Kostova AT, Talalay P (2008) Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res 52(Suppl):S128–S138

    Google Scholar 

  • Elinos-Calderón D, Robledo-Arratia Y, Pérez-De La Cruz V, Pedraza-Chaverrí J, Ali SF, Santamaría A (2009) Early nerve ending rescue from oxidative damage and energy failure by l-carnitine as post-treatment in two neurotoxic models in rat: recovery of antioxidant and reductive capacities. Exp Brain Res 197:287–296

  • Ferrer I, Blanco R, Carmona M (2001) Differential expression of active, phosphorylation-dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates following quinolinic acid excitotoxicity in the rat. Mol Brain Res 94:48–58

    Article  CAS  PubMed  Google Scholar 

  • García E, Limón D, Pérez-De La Cruz V, Giordano M, Díaz-Muñoz M, Maldonado PD, Herrera-Mundo MN, Pedraza-Chaverrí J, Santamaría A (2008) Lipid peroxidation, mitochondrial dysfunction and neurochemical and behavioural deficits in different neurotoxic models: Protective role of S-allylcysteine. Free Radic Res 42:892–902

    Article  PubMed  Google Scholar 

  • Geng Z, Rong Y, Lau BH (1997) S-Allyl cysteine inhibits activation of nuclear factor kappa B in human T cells. Free Radic Biol Med 23:345–350

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Mundo MN, Silva-Adaya D, Maldonado PD, Galván-Arzate S, Andrés-Martínez L, Pérez-De La Cruz V, Pedraza-Chaverrí J, Santamaría A (2006) S-Allylcysteine prevents the rat from 3-nitropropionic acid-induced hyperactivity, early markers of oxidative stress and mitochondrial dysfunction. Neurosci Res 56:39–44

    Article  CAS  PubMed  Google Scholar 

  • Ide N, Lau BH (1997) Garlic compounds protect vascular endothelial cells from oxidized low density lipoprotein-induced injury. J Pharm Pharmacol 49:908–911

    CAS  PubMed  Google Scholar 

  • Ide N, Lau BH (2001) Garlic compounds minimize intracellular oxidative stress and inhibit nuclear factor-kB activation. J Nutr 131:1020–1026

    Google Scholar 

  • Ishige K, Takagi N, Imai T, Rausch WD, Kosuge Y, Kihara T, Kusama-Eguchi K, Ikeda H, Cools AR, Waddington JL, Koshikawa N, Ito Y (2007) Role of caspase-12 in amyloid beta-peptide-induced toxicity in organotypic hippocampal slices cultured for long periods. J Pharmacol Sci 104:46–55

    Article  CAS  PubMed  Google Scholar 

  • Kim KM, Chun SB, Koo MS, Choi WJ, Kim TW, Kwon YG, Chung HT, Billiar TR, Kim YM (2001) Differential regulation of NO availability from macrophages and endothelial cells by the garlic component S-allyl cysteine. Free Radic Biol Med 30:747–756

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, Lee JC, Chang N, Chun HS, Kim WK (2006) S-Allyl-l-cysteine attenuates cerebral ischemic injury by scavenging peroxynitrite and inhibiting the activity of extracellular signal-regulated kinase. Free Radic Res 40:827–835

    Article  CAS  PubMed  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M (1991) 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 18:492–498

    CAS  PubMed  Google Scholar 

  • Maldonado PD, Barrera D, Rivero I, Mata R, Medina-Campos ON, Hernández-Pando R, Pedraza-Chaverrí J (2003) Antioxidant S-allylcysteine prevents gentamicin-induced oxidative stress and renal damage. Free Radic Biol Med 35:317–324

    Article  CAS  PubMed  Google Scholar 

  • Martin RL, Lloyd HG, Cowan AI (1994) The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci 17:251–257

    Article  CAS  PubMed  Google Scholar 

  • Medina-Campos ON, Barrera D, Segoviano-Murillo S, Rocha D, Maldonado PD, Mendoza-Patiño N, Pedraza-Chaverrí J (2007) S-allylcysteine scavenges singlet oxygen and hypochlorous acid and protects LLC-PK1 cells of potassium dichromate-induced toxicity. Food Chem Toxicol 45:2030–2039

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi T, Matsuura H, Kodera Y, Itakura Y, Katsuki H, Saito H, Nishiyama N (1997) Neurotrophic activity of organosulfur compounds having a thioallyl group on cultured rat hippocampal neurons. Neurochem Res 22:1449–1452

    Article  CAS  PubMed  Google Scholar 

  • Nicholls DG, Johnson-Cadwell L, Vesce S, Jekabsons M, Yadava N (2007) Bioenergetics of mitochondria in cultured neurons and their role in glutamate excitotoxicity. J Neurosci Res 85:3206–3212

    Article  CAS  PubMed  Google Scholar 

  • Numagami Y, Ohnishi ST (2001) S-Allylcysteine inhibits free radical production, lipid peroxidation and neuronal damage in rat brain ischemia. J Nutr 131:1100S–1105S

    CAS  PubMed  Google Scholar 

  • Numagami Y, Sato S, Ohnishi ST (1996) Attenuation of rat ischemic brain damage by aged garlic extracts: a possible protecting mechanism as antioxidants. Neurochem Int 29:135–143

    Article  CAS  PubMed  Google Scholar 

  • Pang Z, Geddes JW (1997) Mechanisms of cell death induced by the mitochondrial toxin 3-nitropropionic acid: acute excitotoxic necrosis and delayed apoptosis. J Neurosci 17:3064–3073

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Peng Q, Buz’Zard AR, Lau BH (2002) Neuroprotective effect of garlic compounds in amyloid-beta peptide-induced apoptosis in vitro. Med Sci Monit 8:BR328–BR337

    CAS  PubMed  Google Scholar 

  • Pérez-De La Cruz V, González-Cortés C, Galván-Arzate S, Medina-Campos ON, Pérez-Severiano F, Ali SF, Pedraza-Chaverrí J, Santamaría A (2005) Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington’s disease in rats: protective role of iron porphyrinate 5, 10, 15, 20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III). Neuroscience 135:463–474

    Article  PubMed  Google Scholar 

  • Pérez-De La Cruz V, Konigsberg M, Pedraza-Chaverrí J, Herrera-Mundo N, Díaz-Muñoz M, Morán J, Fortoul-van der Goes T, Rondán-Zárate A, Maldonado PD, Ali SF, Santamaría A (2008) Cytoplasmic calcium mediates oxidative damage in an excitotoxic/energetic deficit synergic model in rats. Eur J Neurosci 27:1075–1085

    Article  PubMed  Google Scholar 

  • Pérez-Severiano F, Rodríguez-Pérez M, Pedraza-Chaverrí J, Maldonado PD, Medina-Campos ON, Ortíz-Plata A, Sánchez-García A, Villeda-Hernández J, Galván-Arzate S, Aguilera P, Santamaría A (2004a) S-Allylcysteine, a garlic-derived antioxidant, ameliorates quinolinic acid-induced neurotoxicity and oxidative damage in rats. Neurochem Int 45:1175–1183

    Article  PubMed  Google Scholar 

  • Pérez-Severiano F, Salvatierra-Sánchez R, Rodríguez-Pérez M, Cuevas-Martínez EY, Guevara J, Limón D, Maldonado PD, Medina-Campos ON, Pedraza-Chaverrí J, Santamaría A (2004b) S-Allylcysteine prevents amyloid-β peptide-induced oxidative stress in rat hippocampus and ameliorates learning deficits. Eur J Pharmacol 489:197–202

    Article  PubMed  Google Scholar 

  • Rossato JI, Ketzer LA, Centurião FB, Silva SJ, Lüdtke DS, Zeni G, Braga AL, Rubin MA, Rocha JB (2002) Antioxidant properties of new chalcogenides against lipid peroxidation in rat brain. Neurochem Res 27:297–303

    Article  CAS  PubMed  Google Scholar 

  • Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105–111

    Article  CAS  PubMed  Google Scholar 

  • Santamaría A, Jiménez ME (2005) Oxidative/nitrosative stress, a common factor in different neurotoxic paradigms: an overview. Curr Top Neurochem 4:1–20

    Google Scholar 

  • Santamaría A, Ríos C (1993) MK-801, an N-methyl-d-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum. Neurosci Lett 159:51–54

    Article  PubMed  Google Scholar 

  • Sas K, Robotka H, Toldi J, Vécsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239

    Article  CAS  PubMed  Google Scholar 

  • Schwarcz R, Whetsell WO Jr, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219:316–318

    Article  CAS  PubMed  Google Scholar 

  • Schwarcz R, Foster AC, French ED, Whetsell WO Jr, Köhler C (1984) Excitotoxic models for neurodegenerative disorders. Life Sci 35:19–32

    Article  CAS  PubMed  Google Scholar 

  • Sener G, Sakarcan A, Yegen BC (2007) Role of garlic in the prevention of ischemia–reperfusion injury. Mol Nutr Food Res 51:1345–1352

    Article  CAS  PubMed  Google Scholar 

  • Silva-Adaya D, Pérez-De La Cruz V, Herrera-Mundo MN, Mendoza-Macedo K, Villeda-Hernández J, Binienda Z, Ali SF, Santamaría A (2008) Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of l-carnitine. J Neurochem 105:677–689

    Article  CAS  PubMed  Google Scholar 

  • Smith AJ, Smith RA, Stone TW (2009) 5-Hydroxyanthranilic acid, a tryptophan metabolite, generates oxidative stress and neuronal death via p38 activation in cultured cerebellar granule neurons. Neurotox Res 15:303–310

    Article  CAS  PubMed  Google Scholar 

  • Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379

    CAS  PubMed  Google Scholar 

  • Túnez I, Santamaría A (2009) Model of Huntington’s disease induced with 3-nitropropionic acid. Rev Neurol 48:430–434

    PubMed  Google Scholar 

  • Túnez I, Montilla P, Del Carmen-Muñoz M, Feijóo M, Salcedo M (2004) Protective effect of melatonin on 3-nitropropionic acid-induced oxidative stress in synaptosomes in an animal model of Huntington’s disease. J Pineal Res 37:252–256

    Article  PubMed  Google Scholar 

  • Yamasaki T, Li L, Lau BH (1994) Garlic compounds protect vascular endothelial cells from hydrogen peroxide-induced oxidant injury. Phytother Res 8:408–412

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACyT-México Grants 48370-Q (A.S.) and 48812 (J.P.-Ch). Diana Elinos-Calderón received scholarships from Fundación Armstrong-México and PROBEI, S.S.A.-Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Santamaría.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elinos-Calderón, D., Robledo-Arratia, Y., Pérez-De La Cruz, V. et al. Antioxidant strategy to rescue synaptosomes from oxidative damage and energy failure in neurotoxic models in rats: protective role of S-allylcysteine. J Neural Transm 117, 35–44 (2010). https://doi.org/10.1007/s00702-009-0299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0299-5

Keywords

Navigation