Skip to main content
Log in

The effect of dopaminergic therapy on intraoperative microelectrode recordings for subthalamic deep brain stimulation under GA: can we operate on patients ‘on medications’?

  • Clinical Article - Functional
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Objectives

Microelectrode recording (MER) plays an important role in target refinement in deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson’s disease (PD). Traditionally, patients were operated on in the ‘off-medication’ state to allow intraoperative assessment of the patient response to direct STN stimulation. The development of intraoperative microelectrode recording (MER) has facilitated the introduction of general anaesthesia (GA). However, the routine withdrawal of dopaminergic medications has remained as standard practice. This retrospective review examines the effect of continuing these medications on intraoperative MER for subthalamic DBS insertion under GA and discusses the clinical implication of this approach.

Methods

Retrospective review of PD patients who had bilateral STN DBS insertion was conducted. A cohort of seven patients (14 STN microelectrodes) between 2012 and 2013, who inadvertently underwent the procedure while ‘on medication’, was identified. This ‘on-medication’ group was compared to all other patients who underwent the same procedure between 2012 and 2013 and had their medications withdrawn preoperatively, the ‘off-medication’ group, n = 26 (52 STN DBS). The primary endpoint was defined as the number of microelectrode tracks required to obtain adequate STN recordings. A second endpoint was the length of MERs that was finally used to guide the DBS lead insertion. The Reduction of the levo-dopa equivalent daily dose (LEDD) was also examined as a surrogate marker for clinical outcome 12 months postoperatively for both groups. For the on-medication group further analysis of the clinical outcome was done relying on the change in the motor examination at 12 months following STN DBS using the following parameters (Hoehn and Yahr scale, the number of waking hours spent in the OFF state as well as the duration of dyskinesia during the ON periods).

Results

The on-medication group was statistically comparable in all baseline characteristics to the off-medication group, including age at operation 57 ± 9.9 years vs. 61.5 ± 9.2 years, p = 0.34 (mean ± SD); duration of disease (11.6 ± 5 years vs. 11.3 ± 4 years, p = 0.68); gender F:M ratio (1:6 vs. 9:17, p = 0.40). Both groups had similar PD medication regimes preoperatively expressed as levodopa equivalent daily dose (LEDD) 916 mg (558–1850) vs. 744 mg (525–3591), respectively, p = 0.77. In the on-medication group, all seven patients (14 STN electrodes) had satisfactory STN recording from a single brain track versus 15 out of 26 patients (57.7 %) in the off-medication group, p = 0.06. The length of MER was 4.5 mm (3.0–5.5) in the on-medication group compared to 3.5 mm (3.0–4.5) in the off-medication group, p = 0.16. The percentage of reduction in LEDD postoperatively for the on-medication group was comparable to that in the off-medication group, 62 % versus 58 %, respectively, p > 0.05. All patients in the on-medication group had clinically significant improvement in their PD motor symptoms as assessed by the Hoehn and Yahr scale; the number of hours (of the waking day) spent in the OFF state dropped from 6.9 (±2.3) h to 0.9 (±1.6) h; the duration of dyskinesia during the ON state dropped from 64 % (±13 %) of the ON period to only 7 % (±12 %) at 12 months following STN DBS insertion.

Conclusion

STN DBS insertion under GA can be performed without the need to withdraw dompaminergic treatment preoperatively. In this review the inadvertent continuation of medications did not affect the physiological localisation of the STN or the clinical effectiveness of the procedure. The continuation of dopamine therapy is likely to improve the perioperative experience for PD patients, avoid dopamine-withdrawal complications and improve recovery. A prospective study is needed to verify the results of this review

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrade-Souza YM, Schwalb JM, Hamani C, Eltahawy H, Hoque T, Saint-Cyr J, Lozano AM (2005) Comparison of three methods of targeting the subthalamic nucleus for chronic stimulation in Parkinson’s disease. Neurosurgery 56(2):360–368

    PubMed  Google Scholar 

  2. Benazzouz A, Breit S, Koudsie A, Pollak P, Krack P, Benabid AL (2002) Intraoperative micro-recordings of the subthalamic nucleus in Parkinson’s disease. Mov Disord 17(3):S145–S149

    Article  PubMed  Google Scholar 

  3. Binder DK, Rau G, Starr PA (2003) Hemorrhagic complications of microelectrode-guided deep brain stimulation. Stereotact Funct Neurosurg 80(1–4):28–31

    Article  PubMed  Google Scholar 

  4. Binder DK, Rau GM, Starr PA (2005) Risk factors for haemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery 56:722–732

    Article  PubMed  Google Scholar 

  5. Bour LJ, Contarino MF, Foncke EM, de Bie RM, van den Munckhof P, Speelman JD, Schuurman PR (2010) Long-term experience with intraoperative microrecording during DBS neurosurgery in STN and GPi. Acta Neurochir (Wien) 152(12):2069–2077

    Article  Google Scholar 

  6. Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21:1033–1038

    PubMed  CAS  Google Scholar 

  7. Brown P, Williams D (2005) Basal ganglia local field potential activity: character and functional significance in the human. Clin Neurophysiol 116:2510–2519

    Article  PubMed  Google Scholar 

  8. Carlson JD, Cleary DR, Cetas JS, Heinricher MM, Burchiel KJ (2010) Deep brain stimulation does not silence neurons in subthalamic nucleus in Parkinson’s patients. J Neurophysiol 103:962–967

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cassidy M, Mazzone P, Oliviero A, Insola A, Tonali P, Di Lazzaro V, Brown P (2002) Movement-related changes in synchronization in the human basal ganglia. Brain 125:1235–1246

    Article  PubMed  Google Scholar 

  10. Chrastina J, Novák Z, Baláž M, Říha I, Bočková M, Rektor I (2013) The role of brain shift, patient age, and Parkinson’s disease duration in the difference between anatomical and electrophysiological targets for subthalamic stimulation. Br J Neurosurg 27(5):676–682

    Article  PubMed  Google Scholar 

  11. Easdown LJ, Tessler KJ, Minuk J (1995) Upper airway involvement in Parkinson’s disease resulting in postoperative respiratory failure. Can J Anaesth 42(4):344–347

    Article  PubMed  CAS  Google Scholar 

  12. Fenoy AJ, Simpson RK Jr (2014) Risks of common complications in deep brain stimulation surgery: management and avoidance. J Neurosurg 120(1):132–139

    Article  PubMed  Google Scholar 

  13. Foffani G, Ardolino G, Rampini P, Tamma F, Caputo E, Egidi MCerutti S, Barbieri S, Priori A (2005) Physiological recordings from electrodes implanted in the basal ganglia for deep brain stimulation in Parkinson’s disease. The relevance of fast subthalamic rhythms. Acta Neurochir Suppl 93:97–99

    Article  PubMed  CAS  Google Scholar 

  14. Gross RE, Krack P, Rodriguez-Oroz MC, Rezai AR, Benabid AL (2006) Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov Disord 21(14):S259–S283

    Article  PubMed  Google Scholar 

  15. Hamani C, Richter E, Schwalb JM, Lozano AM (2005) Bilateral subthalamic nucleus stimulation for Parkinson’s disease: a systematic review of the clinical literature. Neurosurgery 56(6):1313–1321

    Article  PubMed  Google Scholar 

  16. Hamid NA, Mitchell RD, Mocroft P, Westby GW, Milner J, Pall H (2005) Targeting the subthalamic nucleus for deep brain stimulation: technical approach and fusion of pre- and postoperative MR images to define accuracy of lead placement. J Neurol Neurosurg Psychiatry 76:409–414

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Hammond C, Ammari R, Bioulac B, Garcia L (2008) Latest view on the mechanism of action of deep brain stimulation. Mov Disord 23(15):2111–2121

    Article  PubMed  Google Scholar 

  18. Harries AM, Kausar J, Roberts SA, Mocroft AP, Hodson JA, Pall HS, Mitchell RD (2012) Deep brain stimulation of the subthalamic nucleus for advanced Parkinson disease using general anesthesia: long-term results. J Neurosurg 116(1):107–113

    Article  PubMed  Google Scholar 

  19. Hutchison WD, Allan RJ, Opitz H, Levy R, Dostrovsky JO, Lang AE, Lozano AM (1998) Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol 44(4):622–628

    Article  PubMed  CAS  Google Scholar 

  20. Kim JH, Kwon TH, Koh SB, Park JY (2010) Parkinsonism-hyperpyrexia syndrome after deep brain stimulation surgery: case report. Neurosurgery 66(5), E1029

    Article  PubMed  Google Scholar 

  21. Kinfe TM, Vesper J (2013) The impact of multichannel microelectrode recording (MER) in deep brain stimulation of the basal ganglia. Acta Neurochir Suppl 117:27–33

    PubMed  Google Scholar 

  22. Kleiner-Fisman G, Herzog J, Fisman DN, Tamma F, Lyons KE, Pahwa R, Lang AE, Deuschl G (2006) Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord 21(14):S290–S304

    Article  PubMed  Google Scholar 

  23. Kuhn AA, Tsui A, Aziz T, Ray N, Brucke C, Kupsch A, Schneider GH, Brown P (2009) Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp Neurol 215:380–387

    Article  PubMed  Google Scholar 

  24. Kuno S, Mizuta E, Yamasaki S (1997) Neuroleptic malignant syndrome in parkinsonian patients: risk factors. Eur Neurol 38(2):56–59

    Article  PubMed  Google Scholar 

  25. Lee KH, Blaha CD, Garris PA, Mohseni P, Horne AE, Bennet KE, Agnesi F, Bledsoe JM, Lester DB, Kimble C, Min HK, Kim YB, Cho ZH (2009) Evolution of deep brain stimulation: human electrometer and smart devices supporting the next generation of therapy. Neuromodulation 12(2):85–103

    Article  PubMed  PubMed Central  Google Scholar 

  26. Levy R, Dostrovsky JO, Lang AE, Sime E, Hutchison WD, Lozano AM (2001) Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson’s disease. J Neurophysiol 86(1):249–260

    PubMed  CAS  Google Scholar 

  27. Levy R, Hutchison WD, Lozano AM, Dostrovsky JO (2002) Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity. J Neurosci 22(7):2855–2861

    PubMed  CAS  Google Scholar 

  28. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 339(16):1105–1111

    Article  PubMed  CAS  Google Scholar 

  29. Machado AG, Deogaonkar M, Cooper S (2012) Deep brain stimulation for movement disorders: patient selection and technical options. Cleve Clin J Med 79(2):S19–S24

    Article  PubMed  Google Scholar 

  30. Mann JM, Foote KD, Garvan CW, Fernandez HH, Jacobson CE 4th, Rodriguez RL, Haq IU, Siddiqui MS, Malaty IA, Morishita T, Hass CJ, Okun MS (2009) Brain penetration effects of microelectrodes and DBS leads in STN or GPi. J Neurol Neurosurg Psychiatry 80(7):794–797

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. McIntyre CC, Hahn PJ (2010) Network perspectives on the mechanisms of deep brain stimulation. Neurobiol Dis 38(3):329–337

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mena MA, Casarejos MJ, Solano RM, de Yebenes JG (2009) Half a century of l-DOPA. Curr Top Med Chem 9(10):880–893

    PubMed  CAS  Google Scholar 

  33. Moll CK, Payer S, Gulberti A, Sharrott A, Zittel S, Boelmans K, Köppen J, Gerloff C, Westphal M, Engel AK, Oehlwein C, Buhmann C, Hamel W (2013) STN stimulation in general anaesthesia: evidence beyond ‘evidence-based medicine’. Acta Neurochir Suppl 117:19–25

    PubMed  Google Scholar 

  34. Montgomery EB Jr (2012) Microelectrode targeting of the subthalamic nucleus for deep brain stimulation surgery. Mov Disord 27(11):1387–1391

    Article  PubMed  Google Scholar 

  35. Perestelo-Pérez L, Rivero-Santana A, Pérez-Ramos J, Serrano-Pérez P, Panetta J, Hilarion P (2014) Deep brain stimulation in Parkinson’s disease: meta-analysis of randomized controlled trials. J Neurol 261(11):2051–2060

    Article  PubMed  Google Scholar 

  36. Piacentino M, Zambon G, Pilleri M, Bartolomei L (2013) Comparison of the incidence of intracranial hemorrhage in two different planning techniques for stereotactic electrode placement in the deep brain stimulation. J Neurosurg Sci 57(1):63–67

    PubMed  CAS  Google Scholar 

  37. Rabinak CA, Nirenberg MJ (2010) Dopamine agonist withdrawal syndrome in Parkinson disease. Arch Neurol 67(1):58–63

    Article  PubMed  Google Scholar 

  38. Sansur CA, Frysinger RC, Pouratian N, Fu KM, Bittl M, Oskouian RJ, Laws ER, Elias WJ (2007) Incidence of symptomatic hemorrhage after stereotactic electrode placement. J Neurosurg 107(5):998–1003

    Article  PubMed  Google Scholar 

  39. Schlaier JR, Habermeyer C, Janzen A, Fellner C, Hochreiter A, Proescholdt M, Brawanski A, Lange M (2013) The influence of intraoperative microelectrode recordings and clinical testing on the location of final stimulation sites in deep brain stimulation for Parkinson’s disease. Acta Neurochir (Wien) 155(2):357–366

    Article  Google Scholar 

  40. Starr PA (2002) Placement of deep brain stimulators into the subthalamic nucleus or Globus pallidus internus: technical approach. Stereotact Funct Neurosurg 79(3–4):118–145

    Article  PubMed  Google Scholar 

  41. Sutcliffe AJ, Mitchell RD, Gan YC, Mocroft AP, Nightingale P (2011) General anaesthesia for deep brain stimulator electrode insertion in Parkinson’s disease. Acta Neurochir (Wien) 153(3):621–627

    Article  CAS  Google Scholar 

  42. Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25(15):2649–2653

    Article  PubMed  Google Scholar 

  43. Umemura A, Oka Y, Yamada K, Oyama G, Shimo Y, Hattori N (2013) Validity of single tract microelectrode recording in subthalamic nucleus stimulation. Neurol Med Chir (Tokyo) 53(11):821–827

    Article  Google Scholar 

  44. Ward C (2005) Neuroleptic malignant syndrome in a patient with Parkinson’s disease: a case study. J Neurosci Nurs 37(3):160–162

    Article  PubMed  Google Scholar 

  45. Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ Jr, Rothlind J, Sagher O, Reda D, Moy CS, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein J, Stoner G, Heemskerk J, Huang GD, CSP 468 Study Group (2009) Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 301(1):63–73

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Wichmann T, DeLong MR (2003) Functional neuroanatomy of the basal ganglia in Parkinson’s disease. Adv Neurol 91:9–18

    PubMed  Google Scholar 

  47. Zhu Z, Barto M, Shen K (2002) Johnson: excitatory effects of dopamine on subthalamic nucleus neurons: in vitro study of rats pretreated with 6-hydroxydopamine and levodopa. Brain Res 945(1):31–40

    Article  PubMed  CAS  Google Scholar 

  48. Zrinzo L, Foltynie T, Limousin P, Hariz MI (2012) Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. J Neurosurg 116(1):84–94

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed J. Asha.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asha, M.J., Kausar, J., Krovvidi, H. et al. The effect of dopaminergic therapy on intraoperative microelectrode recordings for subthalamic deep brain stimulation under GA: can we operate on patients ‘on medications’?. Acta Neurochir 158, 387–393 (2016). https://doi.org/10.1007/s00701-015-2631-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-015-2631-1

Keywords

Navigation