Skip to main content
Log in

In vitro performance and principles of anti-siphoning devices

  • Experimental research - Pediatrics
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Anti-siphon devices (ASDs) of various working principles were developed to overcome overdrainage-related complications associated with ventriculoperitoneal shunting.

Objective

We aimed to provide comparative data on the pressure and flow characteristics of six different types of ASDs (gravity-assisted, membrane-controlled, and flow-regulated) in order to achieve a better understanding of these devices and their potential clinical application.

Methods

We analyzed three gravity-dependent ASDs (ShuntAssistant [SA], Miethke; Gravity Compensating Accessory [GCA], Integra; SiphonX [SX], Sophysa), two membrane-controlled ASDs (Anti-Siphon Device [IASD], Integra; Delta Chamber [DC], Medtronic), and one flow-regulated ASD (SiphonGuard [SG], Codman). Defined pressure conditions within a simulated shunt system were generated (differential pressure 10–80 cmH2O), and the specific flow and pressure characteristics were measured. In addition, the gravity-dependent ASDs were measured in defined spatial positions (0–90°).

Results

The flow characteristics of the three gravity-assisted ASDs were largely dependent upon differential pressure and on their spatial position. All three devices were able to reduce the siphoning effect, but each to a different extent (flow at inflow pressure: 10 cmH2O, siphoning -20 cmH2O at 0°/90°: SA, 7.1 ± 1.2*/2.3 ±  0.5* ml/min; GCA, 10.5 ± 0.8/3.4 ± 0.4* ml/min; SX, 9.5 ± 1.2*/4.7 ± 1.9* ml/min, compared to control, 11.1 ± 0.4 ml/min [*p < 0.05]). The flow characteristics of the remaining ASDs were primarily dependent upon the inflow pressure effect (flow at 10 cmH2O, siphoning 0 cmH2O/ siphoning -20cmH2O: DC, 2.6 ± 0.1/ 4 ± 0.3* ml/min; IASD, 2.5 ± 0.2/ 0.8 ± 0.4* ml/min; SG, 0.8 ± 0.2*/ 0.2 ± 0.1* ml/min [*p < 0.05 vs. control, respectively]).

Conclusion

The tested ASDs were able to control the siphoning effect within a simulated shunt system to differing degrees. Future comparative trials are needed to determine the type of device that is superior for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allin DM, Czosnyka ZH, Czosnyka M, Richards HK, Pickard JD (2006) In vitro hydrodynamic properties of the Miethke proGAV hydrocephalus shunt. Cerebrospinal Fluid Res 3:9

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aschoff A, Kremer P, Benesch C, Fruh K, Klank A, Kunze S (1995) Overdrainage and shunt technology. A critical comparison of programmable, hydrostatic and variable-resistance valves and flow-reducing devices. Childs Nerv Syst 11(4):193–202

    Article  PubMed  CAS  Google Scholar 

  3. Aschoff A, Kremer P, Hashemi B, Kunze S (1999) The scientific history of hydrocephalus and its treatment. Neurosurg Rev 22(2–3):67–93, discussion 94–95

    Article  PubMed  CAS  Google Scholar 

  4. Bergsneider M, Miller C, Vespa PM, Hu X (2008) Surgical management of adult hydrocephalus. Neurosurgery 62(Suppl 2):643–659, discussion 659–660

    PubMed  Google Scholar 

  5. Boon AJ, Tans JT, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer HA, Avezaat CJ, de Jong DA, Gooskens RH, Hermans J (1998) Dutch Normal-Pressure Hydrocephalus Study: randomized comparison of low- and medium-pressure shunts. J Neurosurg 88(3):490–495

    Article  PubMed  CAS  Google Scholar 

  6. Bret P, Guyotat J, Ricci AC, Mottolese C, Jouanneau E (1999) Clinical experience with the Sp[hy adjustable valve in the treatment of adult hydrocephalus. A series of 147 cases. Neurochirurgie 45(2):98–108, discussion 108–109

    PubMed  CAS  Google Scholar 

  7. Browd SR, Gottfried ON, Ragel BT, Kestle JRW (2006) Failure of cerebrospinal fluid shunts: part II: overdrainage, loculation, and abdominal complications. Pediatr Neurol 34(3):171–176

    Article  PubMed  Google Scholar 

  8. Chong CCW, van Gelder J, Sheridan M (2002) Clinical experience with the low pressure Novus valve in the treatment of adult hydrocephalus. J Clin Neurosci 9(5):539–543

    Article  PubMed  Google Scholar 

  9. Czosnyka M, Czosnyka Z, Whitehouse H, Pickard JD (1997) Hydrodynamic properties of hydrocephalus shunts: United Kingdom Shunt Evaluation Laboratory. J Neurol Neurosurg Psychiatry 62(1):43–50

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Czosnyka Z, Czosnyka M, Pickard JD (1999) Hydrodynamic performance of a new siphon preventing device: the SiphonGuard. J Neurol Neurosurg Psychiatry 66(3):408–409

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Czosnyka Z, Czosnyka M, Richards HK, Pickard JD (2002) Laboratory testing of hydrocephalus shunts – conclusion of the U.K. Shunt evaluation programme. Acta Neurochir (Wien) 144(6):525–538, discussion 538

    Article  CAS  Google Scholar 

  12. Davis SE, Levy ML, McComb JG, Sposto R (2000) The delta valve: how does its clinical performance compare with two other pressure differential valves without antisiphon control? Pediatr Neurosurg 33(2):58–63

    Article  PubMed  CAS  Google Scholar 

  13. Freimann FB, Vajkoczy P, Sprung C (2013) Patients benefit from low-pressure settings enabled by gravitational valves in normal pressure hydrocephalus. Clin Neurol Neurosurg. doi:10.1016/j.clineuro.2013.06.010

    PubMed  Google Scholar 

  14. Freimann FB, Luhdo M-L, Rohde V, Vajkoczy P, Wolf S, Sprung C (2014) The Frankfurt horizontal plane as a reference for the implantation of gravitational units: a series of 376 adult patients. Acta Neurochir (Wien). doi:10.1007/s00701-014-2076-y

    Google Scholar 

  15. Gebert AF, Schulz M, Haberl H, Thomale U-W (2013) Adjustments in gravitational valves for the treatment of childhood hydrocephalus-a retrospective survey. Childs Nerv Syst. doi:10.1007/s00381-013-2160-2

    Google Scholar 

  16. Gruber RW, Roehrig B (2010) Prevention of ventricular catheter obstruction and slit ventricle syndrome by the prophylactic use of the Integra antisiphon device in shunt therapy for pediatric hypertensive hydrocephalus: a 25-year follow-up study. J Neurosurg Pediatr 5(1):4–16

    Article  PubMed  Google Scholar 

  17. Kay AD, Fisher AJ, O’Kane C, Richards HK, Pickard JD (2000) A clinical audit of the Hakim programmable valve in patients with complex hydrocephalus. Br J Neurosurg 14(6):535–542

    Article  PubMed  CAS  Google Scholar 

  18. Kestle JRW, Walker ML, Strata Investigators (2005) A multicenter prospective cohort study of the Strata valve for the management of hydrocephalus in pediatric patients. J Neurosurg 102(2 Suppl):141–145

    Article  PubMed  Google Scholar 

  19. Kiefer M, Eymann R, Meier U (2002) Five years experience with gravitational shunts in chronic hydrocephalus of adults. Acta Neurochir (Wien) 144(8):755–767, discussion 767

    Article  CAS  Google Scholar 

  20. Kiekens R, Mortier W, Pothmann R, Bock WJ, Seibert H (1982) The slit-ventricle syndrome after shunting in hydrocephalic children. Neuropediatrics 13(4):190–194

    Article  PubMed  CAS  Google Scholar 

  21. Kurtom KH, Magram G (2007) Siphon regulatory devices: their role in the treatment of hydrocephalus. Neurosurg Focus 22(4):E5

    Article  PubMed  Google Scholar 

  22. Lemcke J, Meier U, Müller C, Fritsch MJ, Kehler U, Langer N, Kiefer M, Eymann R, Schuhmann MU, Speil A, Weber F, Remenez V, Rohde V, Ludwig HC, Stengel D (2013) Safety and efficacy of gravitational shunt valves in patients with idiopathic normal pressure hydrocephalus: a pragmatic, randomised, open label, multicentre trial (SVASONA). J Neurol Neurosurg Psychiatry 84(8):850–857

    Article  PubMed  PubMed Central  Google Scholar 

  23. Major O, Fedorcsák I, Sipos L, Hantos P, Kónya E, Dobronyi I, Paraicz E (1994) Slit-ventricle syndrome in shunt operated children. Acta Neurochir (Wien) 127(1–2):69–72

    Article  CAS  Google Scholar 

  24. Portnoy HD, Tripp L, Croissant PD (1976) Hydrodynamics of shunt valves. Childs Brain 2(4):242–256

    PubMed  CAS  Google Scholar 

  25. Pudenz RH, Foltz EL (1991) Hydrocephalus: overdrainage by ventricular shunts. A review and recommendations. Surg Neurol 35(3):200–212

    Article  PubMed  CAS  Google Scholar 

  26. Rohde V, Haberl E-J, Ludwig H, Thomale U-W (2009) First experiences with an adjustable gravitational valve in childhood hydrocephalus. J Neurosurg Pediatr 3(2):90–93

    Article  PubMed  Google Scholar 

  27. Thomale U-W, Gebert AF, Haberl H, Schulz M (2013) Shunt survival rates by using the adjustable differential pressure valve combined with a gravitational unit (proGAV) in pediatric neurosurgery. Childs Nerv Syst 29(3):425–431

    Article  PubMed  Google Scholar 

  28. Toma AK, Tarnaris A, Kitchen ND, Watkins LD (2011) Use of proGAV® shunt valve in normal pressure hydrocephalus. Neurosurgery. doi:10.1227/NEU.0b013e318214a809

    Google Scholar 

  29. Zemack G, Romner B (2002) Adjustable valves in normal-pressure hydrocephalus: a retrospective study of 218 patients. Neurosurgery 51(6):1392–1400, discussion 1400–1402

    PubMed  Google Scholar 

Download references

Conflicts of interest

FBF, FS and UWT have received lacture honoraira together with travel expense reimbursement from Aesculap company. UWT developed surgical instruments others than valve technologies together with Miethke company. There are no other personal or institutional interests with regard to the material describedin this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich-Wilhelm Thomale.

Additional information

Florian Baptist Freimann and Takaoki Kimura each contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freimann, F.B., Kimura, T., Stockhammer, F. et al. In vitro performance and principles of anti-siphoning devices. Acta Neurochir 156, 2191–2199 (2014). https://doi.org/10.1007/s00701-014-2201-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-014-2201-y

Keywords

Navigation