Skip to main content

Advertisement

Log in

Curcumin improves early functional results after experimental spinal cord injury

  • Experimental research
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Curcumin is a polyphenol extracted from the rhizome of Curcuma longa and well known as a multifunctional drug with anti-oxidative, anticancerous, and anti-inflammatory activities. The aim of the study was to evaluate and compare the effects of the use of the curcumin and the methylprednisolone sodium succinate (MPSS) functionally, biochemically, and pathologically after experimental spinal cord injury (SCI).

Method

Forty rats were randomly allocated into five groups. Group 1 was performed only laminectomy. Group 2 was introduced 70-g closing force aneurysm clip injury. Group 3 was given 30 mg/kg MPSS intraperitoneally immediately after the trauma. Group 4 was given 200 mg/kg of curcumin immediately after the trauma. Group 5 was the vehicle, and immediately after trauma, 1 mL of rice bran oil was injected. The animals were examined by inclined plane score and Basso–Beattie–Bresnahan scale 24 h after the trauma. At the end of the experiment, spinal cord tissue samples were harvested to analyze tissue concentrations of malondialdehyde (MDA) levels, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) activity, and catalase (CAT) activity and pathological evaluation.

Findings

Curcumin treatment improved neurologic outcome, which was supported by decreased level of tissue MDA and increased levels of tissue GSH-Px, SOD, and CAT activity. Light microscopy results also showed preservation of tissue structure in the treatment group.

Conclusions

This study showed the neuroprotective effects of curcumin on experimental SCI model. By increasing tissue levels of GSH-Px, SOD, and CAT, curcumin seems to reduce the effects of injury to the spinal cord, which may be beneficial for neuronal survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ammon HP, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57:1–7

    Article  PubMed  CAS  Google Scholar 

  2. Anderson DK, Demediuk P, Saunders RD, Dugan LL, Means ED, Horrocks LA (1985) Spinal cord injury and protection. Ann Emerg Med 14:816–821

    Article  PubMed  CAS  Google Scholar 

  3. Balentine JD (1978) Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury. Lab Invest 39:236–253

    PubMed  CAS  Google Scholar 

  4. Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139:244–256

    Article  PubMed  CAS  Google Scholar 

  5. Beril Gok H, Solaroglu I, Okutan O, Cimen B, Kaptanoglu E, Palaoglu S (2007) Metoprolol treatment decreases tissue myeloperoxidase activity after spinal cord injury in rats. J Clin Neurosci 14:138–142

    Article  PubMed  CAS  Google Scholar 

  6. Bhutani MK, Bishnoi M, Kulkarni SK (2009) Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav 92:39–43

    Article  PubMed  CAS  Google Scholar 

  7. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon J (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322:1405–1411

    Article  PubMed  CAS  Google Scholar 

  8. Braughler JM, Hall ED (1983) Uptake and elimination of methylprednisolone from contused cat spinal cord following intravenous injection of the sodium succinate ester. J Neurosurg 58:538–542

    Article  PubMed  CAS  Google Scholar 

  9. Cekmen M, Ilbey YO, Ozbek E, Simsek A, Somay A, Ersoz C (2009) Curcumin prevents oxidative renal damage induced by acetaminophen in rats. Food Chem Toxicol 47:1480–1484

    Article  PubMed  CAS  Google Scholar 

  10. Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH, Chen GS, Chen TM, Chen CA, Lai MK, Pu YS, Pan MH, Wang YJ, Tsai CC, Hsieh CY (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21:2895–2900

    PubMed  CAS  Google Scholar 

  11. Church DF, Pryor WA (1985) Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 64:111–126

    Article  PubMed  CAS  Google Scholar 

  12. Dickens BF, Mak IT, Weglicki WB (1988) Lysosomal lipolytic enzymes, lipid peroxidation, and injury. Mol Cell Biochem 82:119–123

    Article  PubMed  CAS  Google Scholar 

  13. Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS (2001) Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 24:254–264

    Article  PubMed  CAS  Google Scholar 

  14. Ferrari R, Ceconi C, Curello S, Cargnoni A, Alfieri O, Pardini A, Marzollo P, Visioli O (1991) Oxygen free radicals and myocardial damage: protective role of thiol-containing agents. Am J Med 91:95–105

    Article  Google Scholar 

  15. Ghoneim AI, Abdel-Naim AB, Khalifa AE, El-Denshary ES (2002) Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacol Res 46:273–279

    Article  PubMed  CAS  Google Scholar 

  16. Hall ED, Braughler JM (1989) Central nervous system trauma and stroke. II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Radic Biol Med 6:303–313

    Article  PubMed  CAS  Google Scholar 

  17. Hall ED (1993) Lipid antioxidants in acute central nervous system injury. Ann Emerg Med 22:1022–1027

    Article  PubMed  CAS  Google Scholar 

  18. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    Article  PubMed  CAS  Google Scholar 

  19. Jagetia GC (2007) Radioprotection and radiosensitization by curcumin. Adv Exp Med Biol 595:301–320

    Article  PubMed  Google Scholar 

  20. Joe B, Vijaykumar M, Lokesh BR (2004) Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44:97–111

    Article  PubMed  CAS  Google Scholar 

  21. Kahraman S, Düz B, Kayali H, Korkmaz A, Oter S, Aydin A, Sayal A (2007) Effects of methylprednisolone and hyperbaric oxygen on oxidative status after experimental spinal cord injury: a comparative study in rats. Neurochem Res 32:1547–1551

    Article  PubMed  CAS  Google Scholar 

  22. Kalayci M, Coskun O, Cagavi F, Kanter M, Armutcu F, Gul S, Acikgoz B (2005) Neuroprotective effects of ebselen on experimental spinal cord injury in rats. Neurochem Res 30:403–410

    Article  PubMed  CAS  Google Scholar 

  23. Kaptanoglu E, Caner HH, Sürücü HS, Akbiyik F (1999) Effect of mexiletine on lipid peroxidation and early ultrastructural findings in experimental spinal cord injury. J Neurosurg 91:200–204

    PubMed  CAS  Google Scholar 

  24. Kaptanoglu E, Okutan O, Akbiyik F, Solaroglu I, Kilinc A, Beskonakli E (2004) Correlation of injury severity and tissue Evans blue content, lipid peroxidation and clinical evaluation in acute spinal cord injury in rats. J Clin Neurosci 11:879–885

    Article  PubMed  CAS  Google Scholar 

  25. Kaptanoglu E, Tuncel M, Palaoglu S, Konan A, Demirpençe E, Kilinç K (2000) Comparison of the effects of melatonin and methylprednisolone in experimental spinal cord injury. J Neurosurg 93:77–84

    Article  PubMed  CAS  Google Scholar 

  26. King VR, Averill SA, Hewazy D, Priestley JV, Torup L, Michael-Titus AT (2007) Erythropoietin and carbamylated erythropoietin are neuroprotective following spinal cord hemisection in the rat. Eur J Neurosci 26:90–100

    Article  PubMed  CAS  Google Scholar 

  27. Kurt G, Ergün E, Cemil B, Börcek AO, Börcek P, Gülbahar O, Ceviker N (2009) Neuroprotective effects of infliximab in experimental spinal cord injury. Surg Neurol 71:332–336

    Article  PubMed  Google Scholar 

  28. Lin MS, Lee YH, Chiu WT, Hung KS (2010) Curcumin Provides Neuroprotection After Spinal Cord Injury. J Surg Res (in press)

  29. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  30. Mautes AE, Weinzierl MR, Donovan F, Noble LJ (2000) Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys Ther 80:673–687

    PubMed  CAS  Google Scholar 

  31. Motterlini R, Foresti R, Bassi R, Green CJ (2000) Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med 28:1303–1312

    Article  PubMed  CAS  Google Scholar 

  32. Nirmala C, Puvanakrishnan R (1996) Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 159:85–93

    Article  PubMed  CAS  Google Scholar 

  33. Okada K, Wangpoengtrakul C, Tanaka T, Toyokuni S, Uchida K, Osawa T (2001) Curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-induced renal injury in mice. J Nutr 131:2090–2095

    PubMed  CAS  Google Scholar 

  34. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    PubMed  CAS  Google Scholar 

  35. Priyadarsini KI (1997) Free radical reactions of curcumin in membrane models. Free Radic Biol Med 23:838–843

    Article  PubMed  CAS  Google Scholar 

  36. Rivlin AS, Tator CH (1978) Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg Neurol 10:38–43

    PubMed  CAS  Google Scholar 

  37. Sahin S, Söğüt S, Özyurt H, Uz E, İlhan A, Akyol Ö (2002) Tissue xanthine oxidase activity and nitric oxide levels after spinal cord ischemia/reperfusion injury in rabbits: comparison of caffeic acid phenethyl ester (CAPE) and methylprednisolone. Neurosci Res Commun 31:111–121

    Article  CAS  Google Scholar 

  38. Saunders RD, Dugan LL, Demediuk P, Means ED, Horrocks LA, Anderson DK (1987) Effects of methylprednisolone and the combination of alpha-tocopherol and selenium on arachidonic acid metabolism and lipid peroxidation in traumatized spinal cord tissue. J Neurochem 49:24–31

    Article  PubMed  CAS  Google Scholar 

  39. Shen SQ, Zhang Y, Xiang JJ, Xiong CL (2007) Protective effect of curcumin against liver warm ischemia/reperfusion injury in rat model is associated with regulation of heat shock protein and antioxidant enzymes. World J Gastroenterol 13:1953–1961

    PubMed  CAS  Google Scholar 

  40. Shoskes D, Lapierre C, Cruz-Correa M, Muruve N, Rosario R, Fromkin B, Braun M, Copley J (2005) Beneficial effects of the bioflavonoids curcumin and quercetin on early function in cadaveric renal transplantation: a randomized placebo controlled trial. Transplantation 80:1556–1559

    Article  PubMed  CAS  Google Scholar 

  41. Shukla PK, Khanna VK, Khan MY, Srimal RC (2003) Protective effect of curcumin against lead neurotoxicity in rat. Hum Exp Toxicol 22:653–658

    Article  PubMed  CAS  Google Scholar 

  42. Simpson JI, Eide TR, Schiff GA, Clagnaz JF, Hossain I, Tverskoy A, Koski G (1994) Intrathecal magnesium sulfate protects the spinal cord from ischemic injury during thoracic aortic cross-clamping. Anesthesiology 81:1493–1499

    Article  PubMed  CAS  Google Scholar 

  43. Solaroglu I, Kaptanoglu E, Okutan O, Beskonakli E, Attar A, Kilinc K (2005) Magnesium sulfate treatment decreases caspase-3 activity after experimental spinal cord injury in rats. Surg Neurol 64:17–21

    Article  Google Scholar 

  44. Sreejayan RMN (1994) Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm Pharmacol 46:1013–1016

    Article  PubMed  CAS  Google Scholar 

  45. Sun Y (1990) Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic Biol Med 8:583–599

    Article  PubMed  CAS  Google Scholar 

  46. Tator CH (1998) Biology of neurological recovery and functional restoration after spinal cord injury. Neurosurgery 42:696–707

    Article  PubMed  CAS  Google Scholar 

  47. Wang Q, Sun AY, Simonyi A, Jensen MD, Shelat PB, Rottinghaus GE, MacDonald RS, Miller DK, Lubahn DE, Weisman GA, Sun GY (2005) Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J Neurosci Res 82:138–148

    Article  PubMed  CAS  Google Scholar 

  48. Yang YB, Piao YJ (2003) Effects of resveratrol on secondary damages after acute spinal cord injury in rats. Acta Pharmacol Sin 24:703–710

    PubMed  CAS  Google Scholar 

  49. Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson's disease. Free Radic Res 39:1119–1125

    Article  PubMed  CAS  Google Scholar 

  50. Zhao J, Yu S, Zheng W, Feng G, Luo G, Wang L, Zhao Y (2009) Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Neurochem Res 35:374–379

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berker Cemil.

Additional information

Comment

This study is mounted on a template used for investigations similar to this one looking for factors associated with secondary spinal cord injury and potential remedies to prevent it. In this line of work, this article demonstrates that, for this small number of laboratory animals, curcumin seems to elicit a neuroprotective effect against secondary injury in the aftermath of trauma. However, the results obtained have a degree of impact similar to the ones granted by the use of steroids, and these auspicious notes do not necessarily apply to the human.

Manuel Cunha e Sa

Almada, Portugal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cemil, B., Topuz, K., Demircan, M.N. et al. Curcumin improves early functional results after experimental spinal cord injury. Acta Neurochir 152, 1583–1590 (2010). https://doi.org/10.1007/s00701-010-0702-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-010-0702-x

Keywords

Navigation