Skip to main content
Log in

Clues to the evolution of genome size and chromosome number in Tabebuia alliance (Bignoniaceae)

  • Short Communication
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The 82 genera recognized for Bignoniaceae are organized in eight major tribes, Jacarandeae, Tourrettieae, Tecomeae, Coleeae, Crescentiae, Oroxyleae, Catalpeae and Bignonieae. In addition, a monophyletic group, Crescentiina, including the Tabebuia alliance and the Paleotropical clade is recognized. The Tabebuia alliance, endemic to the Neotropics, includes c. 14 genera of trees and shrubs and is comprised of c. 147 species mainly of the genera Tabebuia and Handroanthus. We measured the nuclear DNA contents of 19 Bignoniaceae species to address genome size and chromosome number evolution of the Tabebuia alliance. Nuclear DNA content was estimated using flow cytometry and chromosome counts were performed using propidium iodide-stained metaphase cells. We also obtained data for three different Bignoniaceae species from the Royal Botanical Garden, Kew Plant DNA C-values database. We obtained the phylogenetic tree of analysed species from published data and used independent phylogenetic contrast to correlate chromosome number and 1C DNA content. An almost threefold range of variation in nuclear DNA content was observed among the 22 Bignoniaceae species that could only partially be explained by the occurrence of polyploidy. We found no significant correlation between chromosome number and DNA content among the analysed species. Our results suggest that both increases and decreases of genome size occurred in the evolution of the analysed Bignoniaceae Juss. species, with a large variation among Tabebuia alliance species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Alves MF, Duarte MO, Oliveira PE, Sampaio DS (2013) Self-sterility in the hexaploid Handroanthus serratifolius (Bignoniaceae), the national flower of Brazil. Acta Bot Brasil 27:714–722

    Article  Google Scholar 

  • Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc Roy Soc London Ser B Biol Sci 181:109–135

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot (Oxford) 95:45–90

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2012) Plant DNA C-values database release 6.0. Available at: http://www.rbgkew.org.uk/eval/homepage.html. Accessed August 2015

  • Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in Angiosperms and their modern uses: 807 New Estimates. Ann Bot (Oxford) 86:859–909

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003) Comparisons with Caenorhabditis (~100 Mb) and Drosophila (~175 Mb) using flow cytometry show genome size in Arabidopsis to be ~157 Mb and thus ~25% larger than the Arabidopsis Genome Initiative estimate of ~125 Mb. Ann Bot (Oxford) 91:547–557

    Article  CAS  Google Scholar 

  • Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? Pl Cell 9:1901–1902

    Article  CAS  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2003) Mechanisms of recent genome size variation in flowering plants. Ann Bot (Oxford) 95:127–132

    Article  Google Scholar 

  • Brown S, Bergounioux C, Tallet S, Marie D (1991) Flow cytometry of nuclei for ploidy and cell cycle analysis. In: Negrutiu I, Gharti-Chherti G (eds) A laboratory guide for cellular and molecular plant biology. Bihuser, Basel, pp 326–345

    Google Scholar 

  • Cavalier-Smith T (1985) The evolution of genome size. John Wiley and Sons, Chichester

    Google Scholar 

  • Costa IR, Dornelas MC, Forni-Martins ER (2008) Nuclear genome size variation in fleshy-fruited Neotropical Myrtaceae. Pl Syst Evol 276:209–217

    Article  CAS  Google Scholar 

  • Crow KD, Wagner GP (2006) What is the role of genome duplication in the evolution of complexity and diversity? Molec Biol Evol 23:887–892

    Article  CAS  PubMed  Google Scholar 

  • Dolezel J, Bartos J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot (Oxford) 95:99–110

    Article  CAS  Google Scholar 

  • Firetti-Leggieri F, Costa IR, Lohmann LG, Semir J, Forni-Martins ER (2011) Chromosome studies in Bignonieae (Bignoniaceae): the first record of polyploidy in Anemopaegma. Cytologia 76:185–191

    Article  Google Scholar 

  • Gentry AH (1974) Coevolutionary patterns in Central American Bignoniaceae. Ann Missouri Bot Gard 126:255–266

    Google Scholar 

  • Gentry AH (1980) Bignoniaceae. Flora Neotropica Monograph 25. New York Botanical Garden, New York

  • Grafen A (1989) The phylogenetic regression. Philos Trans Ser B 326:119–156

    Article  CAS  Google Scholar 

  • Grose SO, Olmstead RG (2007a) Evolution of a charismatic Neotropical clade: molecular phylogeny of Tabebuia s. l., Crescentieae, and allied genera (Bignoniaceae). Syst Botany 32:650–659

    Article  Google Scholar 

  • Grose SO, Olmstead RG (2007b) Taxonomic revisions in the polyphyletic genus Tabebuia s. l. (Bignoniaceae). Syst Botany 32:660–670

    Article  Google Scholar 

  • Guerra NA (2002) Cariología de dos especies del género Tabebuia Gomes (Bignoniaceae). Revista Ci UDO Agríc 2:14–21

    Google Scholar 

  • Guerra NA, Natera JRM (2007) Chromosome numbers of three Tabebuia species (Bignoiaceae). Nordic J Bot 25:359–360

    Article  Google Scholar 

  • Johnston JS, Pepper AE, Hall AE, Chen J, Hodnett G, Drabek JMD, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot (Oxford) 95:229–235

    Article  CAS  Google Scholar 

  • Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ (2002) Plant systematics: a phylogenetic approach. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Knight J (2002) All genomes great or small. Nature 417:374–376

    CAS  PubMed  Google Scholar 

  • Lohmann LG, Taylor CM (2014) A new generic classification of Tribe Bignonieae (Bignoniaceae). Ann Missouri Bot Gard 99:348–489

    Article  Google Scholar 

  • Lohmann LG, Ulloa CU (2015) Bignoniaceae in iPlants Prototype Checklist. Available at: http://www.iplants.org. Accessed 2 August 2015

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  CAS  PubMed  Google Scholar 

  • Martin EP, Garland T Jr (1991) Phylogenetic analyses of the correlated evolution of continuous characters: a simulation study. Evolution 45:534–557

    Article  Google Scholar 

  • Martin SL, Husband BC (2012) Whole genome duplication affects evolvability of flowering time in an autotetraploid plant. PLOS One 7:e44784. doi:10.1371/journal.pone.0044784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy EW, Arnold SEJ, Chittka L, Le Comber SC, Verity R, Dodsworth S, Knapp S, Kelly LJ, Chase MW, Baldwin IT, Kovařík A, Mhiri C, Taylor L, Leitch AR (2015) The effect of polyploidy and hybridization on the evolution of floral colour in Nicotiana (Solanaceae). Ann Bot (Oxford) 115:1117–1131

    Article  Google Scholar 

  • Meagher TP, Gillies ACM, Costich DE (2005) Genome size, quantitative genetics and the genomic basis for flower size evolution in Silene latifolia. Ann Bot (Oxford) 95:247–254

    Article  CAS  Google Scholar 

  • Ohri D, Kumar A (1986) Nuclear DNA amounts in some tropical hardwoods. Caryologia 39:303–307

    Article  Google Scholar 

  • Ohri D, Bhargava A, Chatterjee A (2004) Nuclear DNA amounts in 112 species of tropical hardwoods—new estimates. Pl Biol 6:555–561

    Article  CAS  Google Scholar 

  • Olmstead RG, Zjhra ML, Lohmann LG, Grose SO, Eckert AJ (2009) A molecular phylogeny and classification of Bignoniaceae. Amer J Bot (Oxford) 96:1731–1743

    Article  CAS  Google Scholar 

  • Ortolani FA, Mataqueiro MF, Moro JR, Moro FV, Damião Filho CF (2008) Morfo-anatomia de plântulas e número cromossômico de Cybistax antisyphilitica (Mart.) Mart. (Bignoniaceae). Acta Bot Brasil 22:345–353

    Article  Google Scholar 

  • Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Crissman HA, Darzynkiewicz Z (eds) Methods in Cell Biol. Academic Press, New York

    Google Scholar 

  • Petrov DA (2002) Mutational equilibrium model of genome size evolution. Theor Populat Biol 61:533–546

    Article  Google Scholar 

  • Piazzano M (1998) Chromosome numbers of Bignoniaceae from Argentina. Kurtziana 26:179–189

    Google Scholar 

  • Price H, Johnston J (1996) Analysis of plant DNA content by Feulgen microspectrophotometry and flow cytometry. In: Jauhar P (ed) Methods of genome analysis in plants. CRC Press, Boca Raton, pp 115–131

    Google Scholar 

  • Price HJ, Dillon SL, Hodnett G, Rooney W, Ross L, Johnston JS (2005) Genome Evolution in the genus Sorghum (Poaceae). Ann Bot (Oxford) 95:219–227

    Article  CAS  Google Scholar 

  • Schulze M, Grogan J, Uhi C, Lentini M, Vidal E (2008) Evaluating ipê (Tabebuia, Bignoniaceae) logging in Amazonia: sustainable management or catalyst for forest degradation? Biol Conservation 141:2071–2085

    Article  Google Scholar 

  • Soltis DE, Soltis PS, Bennett MD, Leitch IJ (2003) Evolution of genome size in the angiosperms. Amer J Bot 90:1596–1603

    Article  Google Scholar 

  • Spangler RE, Olmstead RG (1999) Phylogenetic analysis of Bignoniaceae based on the cpDNA gene sequences of rbcL and ndhF. Ann Missouri Bot Gard 86:33–46

    Article  Google Scholar 

  • Swenson NG (2009) Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLOS One 4:e4390. doi:10.1371/journal.pone.0004390

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkatasubban KR (1944) Cytological studies in Bignoniaceae. Proc Indian Acad Sci B 21:77–92

    Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. Dolezel (Institute of Experimental Botany, Olomouc, Czech Republic) and E. Emshwiller (The Field Museun of Natural History, Chicago, USA), for valuable help during initial phase of this work. We thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and CNPq (project no 470306/2013-0) for financial support and two anonymous reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosane G. Collevatti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and CNPq (project no 470306/2013-0).

Additional information

Handling editor: Jorg Fuchs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collevatti, R.G., Dornelas, M.C. Clues to the evolution of genome size and chromosome number in Tabebuia alliance (Bignoniaceae). Plant Syst Evol 302, 601–607 (2016). https://doi.org/10.1007/s00606-016-1280-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-016-1280-z

Keywords

Navigation