Skip to main content
Log in

The reproduction of Colletia hystrix and late-flowering in Colletia (Rhamnaceae: Colletieae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Plant fitness strongly depends on the timing of flower production. In temperate climates most plants bloom during a relatively well-defined peak, while comparatively few species flower before or after the community peak. Since a phylogenetical signal has been shown to exist in the determination of reproductive phenology, it is of interest to identify characters associated with the emergence of either type of behaviour. Here we report on the reproduction of the late-flowering shrub Colletia hystrix and discuss the results in the context of the whole genus Colletia. Colletia hystrix shares with its congeners deep flowers, associated with assemblages of long-mouthpart pollinators, and characters that maximise the chances of successful pollen receipt and export in a single pollinator visit (homogamy, a large stigma, and an extragynoecial compitum). Leaflessness and extreme spinescence of Colletia are suggested to be related (via compromised resource acquisition) to phenological displacement and its flower-level correlates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal AA, Johnson MTJ, Hastings AP, Maron JL (2013) A field experiment demonstrating plant life-history evolution and its eco-evolutionary feedback to seed predator populations. Amer Naturalist 181:S35–S45

    Article  Google Scholar 

  • Aizen MA (2003) Influences of animal pollination and seed dispersal on winter flowering in a temperate mistletoe. Ecology 84:2613–2627

    Article  Google Scholar 

  • Aizen MA (2005) Breeding system of Tristerix corymbosus (Loranthaceae), a winter-flowering mistletoe from the southern Andes. Austral J Bot 53:357–361

    Article  Google Scholar 

  • Aizen MA, Ezcurra C (1998) High incidence of plant-animal mutualisms in the woody flora of the temperate forest of southern South America: biogeographical origin and present ecological significance. Ecol Austral 8:217–236

    Google Scholar 

  • Aizen MA, Vázquez DP, Smith-Ramírez C (2002) Natural history and conservation of plant–animal mutualisms in the temperate forest of southern South America. Rev Chil Hist Nat 75:79–97

    Article  Google Scholar 

  • Aizen MA, Sabatino M, Tylianakis JM (2012) Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335:1486–1489

    Article  CAS  PubMed  Google Scholar 

  • Arroyo MTK, Cavieres L, Peñaloza A, Riveros M, Faggi AM (1996) Relaciones fitogeográficas y patrones regionales de riqueza de especies en la flora del bosque lluvioso templado de Sudamérica. In: Armesto JJ, Villagrán C, Arroyo MTK (eds) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago de Chile, pp 71–99

    Google Scholar 

  • Basilio AM, Medan D (2001) Pollinator assemblages of Colletia spinosissima (Rhamnaceae): Composition, behavior, and specificity. Phyton (Buenos Aires) 2001:129–139

    Google Scholar 

  • Basilio AM, Medan D, Torretta JP, Bartoloni NJ (2006) A year-long plant-pollinator network. Austral Ecol 31:975–983

    Article  Google Scholar 

  • Bertin IR, Newman CM (1993) Dichogamy in Angiosperms. Bot Rev 59:112–152

    Article  Google Scholar 

  • Dafni A, Motte Maués M (1998) A rapid and simple procedure to determine stigma receptivity. Sex Pl Reprod 11:177–180

    Article  Google Scholar 

  • D’Ambrogio A, Medan D (1993) Comportamiento reproductivo de Colletia paradoxa (Rhamnaceae). Darwiniana 32:1–14

    Google Scholar 

  • Devoto M, Medan D, Montaldo NH (2005) Patterns of interaction between plants and pollinators along an environmental gradient. Oikos 109:461–472

    Article  Google Scholar 

  • Endress PK (1982) Syncarpy and alternative modes of escaping disadvantages of apocarpy in primitive Angiosperms. Taxon 31:48–52

    Article  Google Scholar 

  • Eskuche U (1999) Estudios fitosociológicos en el norte de la Patagonia II. Los bosques del Nothofagion dombeyi. Phytocoenologia 29:177–252

    Article  Google Scholar 

  • Fitzherbert W (1911) Colletia cruciata. Gard Chron 1911:255

    Google Scholar 

  • Gallagher RV, Hughes L, Leishman MR (2009) Phenological trends among Australian alpine species: using herbarium records to identify climate-change indicators. Austral J Bot 57:1–9

    Article  Google Scholar 

  • Hinojosa LF, Villagrán C (1997) Historia de los bosques del sur de Sudamérica, I: antecedentes paleobotánicos, geológicos y climáticos del Terciario del cono sur de América. Rev Chil Hist Nat 70:225–539

    Google Scholar 

  • Houston J, Hartley AJ (2003) The central andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama desert. Int J Climatol 23:1453–1464

    Article  Google Scholar 

  • Johnson SD (1993) Climatic and phylogenetic determinants of flowering seasonality in the Cape flora. J Ecol 81:567–572

    Article  Google Scholar 

  • Kochmer JP, Handel SN (1986) Constraints and competition in the evolution of flowering phenology. Ecol Monog 56:303–325

    Article  Google Scholar 

  • Kudo G, Suzuki S (2002) Relationships between flowering phenology and fruit-set of dwarf shrubs in alpine fellfields in northern Japan: a comparison with a subarctic heathland in northern Sweden. Arctic Antarctic Alpine Res 34:185–190

    Article  Google Scholar 

  • Lavoie C, Lachance D (2006) A new herbarium-based method for reconstructing the phenology of plant species across large areas. Amer J Bot 93:512–516

    Article  Google Scholar 

  • Lindley J (1850) Memorandum concerning a remarkable case of vegetable transformation. J Hort Soc London 5:29–32

    Google Scholar 

  • Lloyd DG, Webb CJ (1986) The avoidance of interference between the presentation of pollen and stigmas in Angiosperms I. Dichogamy. New Zealand J Bot 24:135–162

    Article  Google Scholar 

  • Mahoro S (2003) Effects of flower and seed predators and pollinators on fruit production in two sequentially flowering congeners. Pl Ecol 166:37–48

    Article  Google Scholar 

  • Markgraf V, McGlone M, Hope G (1995) Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems: a southern perspective. Trends Ecol Evol 10:143–147

    Article  CAS  PubMed  Google Scholar 

  • Medan D (1991) Reproductive phenology, pollination biology, and gynoecium development in Discaria americana (Rhamnaceae). New Zealand J Bot 29:31–42

    Article  Google Scholar 

  • Medan D (2003) Reproductive biology of the Andean shrub Discaria nana (Rhamnaceae). Pl Biol 5:94–102

    Article  Google Scholar 

  • Medan D, Aagesen L (1995) Comparative flower and fruit structure in the Colletieae (Rhamnaceae). Bot Jahrb Syst 117:531–564

    Google Scholar 

  • Medan D, Arce ME (1999) Reproductive biology of the Andean-disjunct genus Retanilla (Rhamnaceae). Pl Syst Evol 218:281–298

    Article  Google Scholar 

  • Medan D, Basilio AM (2001) Reproductive biology of Colletia spinosissima (Rhamnaceae) in Argentina. Pl Syst Evol 229:79–89

    Article  Google Scholar 

  • Medan D, D’Ambrogio AC (1998) Reproductive biology of the andromonoecious shrub Trevoa quinquenervia (Rhamnaceae). Bot J Linn Soc 126:191–206

    Google Scholar 

  • Medan D, Devoto M (2005) Reproductive ecology of a perennial outcrosser with a naturally dissected distribution. Pl Syst Evol 254:173–184

    Article  Google Scholar 

  • Medan D, Montaldo NH (2005) Ornithophily in the Rhamnaceae: the pollination of the Chilean endemic Colletia ulicina. Flora 200:339–344

    Article  Google Scholar 

  • Medan D, Basilio AM, Devoto M, Bartoloni NJ, Torretta JP, Petanidou T (2006) Measuring generalization and connectance in temperate, long-lasting systems. In: Waser N, Ollerton J (eds) Plant-pollinator interactions. From specialization to generalization. University of Chicago, Chicago, pp 245–259

    Google Scholar 

  • Medan D, Zarlavsky G, Bartoloni NJ (2013) Plant reproduction in the high-Andean Puna: Kentrothamnus weddellianus (Rhamnaceae: Colletieae). Pl Syst Evol 299:841–851

    Article  Google Scholar 

  • Morales MA, Dodge GJ, Inouye DW (2005) A phenological mid-domain effect in flowering diversity. Oecologia 142:83–89

    Article  PubMed  Google Scholar 

  • Morales CL, Arbetman MP, Cameron SA, Aizen MA (2013) Rapid ecological replacement of a native bumble bee by invasive species. Front Ecol Environ. doi:10.1890/120321

    Google Scholar 

  • Movia CP, Ower GH, Pérez CE (1982) Estudio de la vegetación natural de la Provincia del Neuquén. Ministerio de Economía y Hacienda. Subsecretaría de Estado de Recursos Naturales, Neuquén (Argentina)

    Google Scholar 

  • Munguía-Rosas MA, Ollerton J, Parra-Tabla V, De-Nova JA (2011) Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. Ecol Lett. doi:10.1111/j.1461-0248.2011.01601.x

    PubMed  Google Scholar 

  • Paruelo JM, Beltrán AM, Jobbágy E et al (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Austral 8:85–101

    Google Scholar 

  • Pilson D (2000) Herbivory and natural selection on flowering phenology in wild sunflower, Helianthus annuus. Oecologia 122:72–82

    Article  Google Scholar 

  • Primack RB (1979) Reproductive biology of Discaria toumatou (Rhamnaceae). New Zealand J Bot 17:9–13

    Article  Google Scholar 

  • Riveros MG, Smith-Ramírez C (1996) Patrones de floración y fructificación en bosques del sur de Chile. In: Armesto J, Villagrán C, Arroyo MTK (eds) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago, pp 71–100

    Google Scholar 

  • Robbirt KM, Davy AJ, Hutchings MJ, Roberts DL (2011) Validation of biological collections as a source of phenological data for use in climate change studies: a case study with the orchid Ophrys sphegodes. J Ecol 99:235–241

    Article  Google Scholar 

  • Roig FA (1998) La vegetación de la Patagonia. In: Correa MN (ed) Flora Patagónica, vol 1. INTA, Buenos Aires, pp 48–174

    Google Scholar 

  • Ronel M, Ne’eman G, Lev-yadun S (2010) Spiny east Mediterranean plant species flower later and in a drier season than non-spiny species. Flora 205:276–281

    Article  Google Scholar 

  • Skottsberg C (1928) Pollinationsbiologie und Samenverbreitung auf den Juan Fernandez-Inseln. In: Skottsberg C (ed) The natural history of Juan Fernandez and Easter Island, vol 2. Almqvist & Wiksell, Uppsala, pp 503–547

    Google Scholar 

  • Sola AJ, Ehrlén J (2007) Vegetative phenology constrains the onset of flowering in the perennial herb Lathyrus vernus. J Ecol 95:208–216

    Article  Google Scholar 

  • Thiers B (2014, continuously updated) Index herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/ih/

  • Torretta JP, Medan D, Abrahamovich AA (2006) First record of the invasive bumblebee Bombus terrestris (L.) (Hymenoptera, Apidae) in Argentina. Trans Amer Entomol Soc 132:285–289

    Article  Google Scholar 

  • Tortosa RD (1989) El género Colletia (Rhamnaceae). Parodiana 5:279–332

    Google Scholar 

  • Tortosa RD, Medan D (1989) Novedades sobre nódulos actinomicorrícicos en angiospermas sudamericanas. Rev Fac Agronomía UBA 10:79–86

    Google Scholar 

  • Tortosa RD, Aagesen L, Tourn GM (1996) Morphological studies in the tribe Colletieae (Rhamnaceae): analysis of architecture and inflorescences. Bot J Linn Soc 122:353–367

    Google Scholar 

  • Valtueña FJ, Ortega-Olivencia A, Rodríguez-Riaño T, López J (2008) Reproductive biology in Anagyris foetida L. (Leguminosae), an autumn-winter flowering and ornithophilous Mediterranean shrub. Bot J Linn Soc 157:519–532

    Article  Google Scholar 

  • Villagrán C, Hinojosa LF (1997) Historia de los bosques del sur de Sudamérica II: Análisis fitogeográfico. Rev Chil Hist Nat 70:241–267

    Google Scholar 

Download references

Acknowledgments

R. González-Vaquero (Museo Argentino de Ciencias Naturales, Buenos Aires) and F. Navarro (Instituto Miguel Lillo, Tucumán) helped with insect identification. M.C. Alvarez, G. Zarlavsky, A.D’Ambrogio and S. Fachino helped in the field and laboratory, and N.J. Bartoloni assisted with statistical analyses. A. Premoli and J. Kellermann provided bibliographic sources. C. Morales and M. Sabatino offered useful insights. Comments by M. Devoto, N.H. Montaldo and an anonymous reviewer helped to improve a previous draft. Financial support was granted by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) and Universidad de Buenos Aires. DM and JPT are affiliated with CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Medan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medan, D., Torretta, J.P. The reproduction of Colletia hystrix and late-flowering in Colletia (Rhamnaceae: Colletieae). Plant Syst Evol 301, 1181–1189 (2015). https://doi.org/10.1007/s00606-014-1142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1142-5

Keywords

Navigation