Skip to main content
Log in

LM and SEM investigations of pollen from PETM and EECO localities of Austria and Great Britain: new findings of Atherospermataceae, Annonaceae, Araceae and Arecaceae from the Lower Eocene

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Fossil pollen from three Lower Eocene localities was investigated by LM and SEM: The Palaeocene–Eocene Thermal Maximum (PETM) section at St Pankraz (Salzburg), three Brixton drill cores covering the PETM and the Early Eocene Climate Optimum locality at Krappfeld. Some pollen taxa found have been affiliated to Laurelia, today a southern hemispheric Atherospermataceae unknown from Europe, to two Annonaceae lineages, such as the African Monodora clade and a probable precursor of the old world Fenerivia/Maasia clades, thus representing two taxa not previously reported from the fossil record. Further two wetland associated Araceae (Limnobiophyllum and Lysichiton) are present as well as various Arecaceae, including not only previously described Salaccinae and Calaminae/Plectocomiinae, but also undocumented Bactridinae, Elaeidinae (both Cocoseae), and Coryphoideae and Arecoideae, although pollen from the latter two subfamilies could not be assigned in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker WJ, Couvreur TLP (2013a) Global Biogeography and diversification of palms shed light on the evolution of tropical lineages. I Historical biogeography. J Biogeogr 40:274–285

    Article  Google Scholar 

  • Baker WJ, Couvreur TLP (2013b) Global Biogeography and diversification of palms shed light on the evolution of tropical lineages. II Diversification history and origin of regional assemblages. J Biogeogr 40:286–298

    Article  Google Scholar 

  • Bijl PK, Schouten S, Sluijs A, Reichart GJ, Zachos JC, Brinkhuis H (2009) The early palaeogene temperature evolution of the southwest Pacific ocean. Nature 461:776–779

    Article  CAS  PubMed  Google Scholar 

  • Bogner J, Johnson KR, Kvacek Z, Upchurch GRJr (2007) New fossil leaves of Araceae from the Late Cretaceous and Paleogene of western North America. Zitteliana A47:133–147

    Google Scholar 

  • Bonde SD (1993) Unonaspermum corneri gen et spec. nov. an annonaceous seed from the Deccan intertrappean bed of India. J Indian Bot Soc 72:251–253

    Google Scholar 

  • Chandler MJJ (1978) Supplement to the lower tertiary floras of southern England, part 5. Tert Res 4:1–47

    Google Scholar 

  • Chatrou LW, Pirie MD, Erken RHJ, Couvreur TLP, Neubig KM, Abbott JR, Mols JB, Maas JW, Saunders RMK, Chase MW (2012) A new subfamiliar and tribal classification of the pantropical flowering plant family Annonaceae informed by molecular phylogenetics. Bot J Linn Soc 169:5–40

    Article  Google Scholar 

  • Collinson ME, Hooker JJ, Gröcke DR (2003) Cobham Lignite Bed and penecontemporaneous macrofloras of southern England. A record of vegetation and fire across the Paleocene–Eocene Thermal Maximum. In: Wing SL, Gingerich PD, Schmitz B, Thomas E (eds) Causes and consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America Special Paper 369:333–349

  • Collinson ME, Steart D, Harrington GJ, Hooker JJ, Scott AC, Allen LO, Glasspool IJ, Gibbons SJ (2009) Palynological evidence of vegetation dynamics in response to palaeoenvironmental change across the onset of the Palaeocene–Eocene Thermal Maximum at Cobham, Southern England. Grana 48:38–66

    Article  Google Scholar 

  • Conran JG, Bannister JM, Lee DE (2013) Fruits and leaves with cuticle of Laurelia otagoensis sp. nov. (Atherospermataceae) from the early Miocene of Otago (New Zealand). Alcheringa 37:496–509

    Article  Google Scholar 

  • Couper RA (1953) Upper Mesozoic and Cainozoic spores and pollen grains from New Zealand. Palaeontol Bullet New Zealand Geol Surv 22:1–77

  • Couvreur TLP, Botermans M, van Heuven BJ, van der Ham JWJM (2008a) Pollen morphology within the Monodora clade, a diverse group of five African Annonaceae genera. Grana 47:185–210

    Article  Google Scholar 

  • Couvreur TLP, Richardson JA, Sosef MSM, Erkens RHJ, Chatrou LW (2008b) Evolution of syncarpy and other morphological characters in African Annonaceae: a posterior mapping approach. Molec Phylogenet Evol 47:302–318

    Article  CAS  PubMed  Google Scholar 

  • Couvreur TLP, Forest F, Baker WJ (2011) Origin and global diversification pattern of tropical rainforests: Inferences from a complete genus-level phylogeny of palms. http://www.biomedcentral.com/1741-7007/9/44

  • Crawley M (2001) Angiosperm woods from British Lower Cretaceous and Palaeogene deposits. Spec Pap Palaeontol 66:1–100

  • Crouch EM, Heilmann-Clausen C, Brinkhuis H, Morgans HEG, Rogers KM, Egger H, Schmitz B (2001) Global dinoflagellate event associated with the late Paleocene thermal maximum. Geology 29:315–318

    Article  CAS  Google Scholar 

  • Crouch EM, Dickens GR, Brinkhuis H, Aubry M-P, Hollis CJ, Rogers KM, Visscher H (2003a) The Apectodinium acme and terrestrial discharge during the Paleocene–Eocene Thermal Maximum: new palynological, geochemical and calcareous nannoplankton observations at Tawanui, New Zealand. Palaeogeogr Palaeoclimatol Palaeoecol 194:387–403

    Article  Google Scholar 

  • Crouch M, Brinkhuis H, Visscher H, Adatte T, Bolle M-P (2003b) Late Paleocene early Eocene dinoflagellate cyst records from the Tethys: Further observations on the global distribution of Apectodinium. In: Wing SL, Gingerich PD, Schmitz B, Thomas E (eds), Causes and Consequences of Globally Warm Climates in the Early Paleogene. Special Paper—Geological Society of America 369:113–131

  • Dransfield J (1984) The Genus Areca (Palmae: Arecoideae) in Borneo. Kew Bullet 39:1–22

  • Dransfield J, Ferguson IK, UhI NW (1990) The coryphoid palms: pattern of variation and evolution. Ann Missouri Bot Gard 77:802–815

    Article  Google Scholar 

  • Dransfield J, UhI NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE (2008) Genera Palmarum - The Evolution and Classification of palms. Kew Publishing, Royal Botanic Gardens

    Google Scholar 

  • Egger H (2011) The early Paleogene history of the Eastern Alps. In: Egger H (ed): Climate and Biota of the Early Paleogene. Field-Trip Guidebook. Ber Geol Bundesanst 86:9–16

  • Ellison RA, King C (2004) Chapter 4. Palaeogene: Paleocene. In: Ellison RA, Woods. A, Allen DJ, Forster A, Pharoah T C, King C. 2004. Geology of London. British Geological Survey, Keyworth, 22–43

  • Elsik WC (1974) Characteristic Eocene palynomorphs in the gulf coast, USA. Palaeontographica Abt. B Paläophytol 149:90–111

    Google Scholar 

  • Ferguson IK, Harley MM (1993) The significance of new and recent work on pollen morphology in the Palmae. Kew Bull 48:205–243

    Article  Google Scholar 

  • Foreman DB, Whiffin T (2007) Atherospermataceae. In: Wilson AJG (ed) Flora of Australia, vol 2. CSIRO, Collingwood, pp 91–103

    Google Scholar 

  • Gibbs SJ, Bown PR, Sessa JA, Bralower J, Wilson PA (2006) Nannoplankton extinction and origination across the Paleocene–Eocene thermal maximum. Science 314:1770–1773

    Article  CAS  PubMed  Google Scholar 

  • Gingerich PD (2006) Environment and evolution through the Paleocene–Eocene thermal maximum. Trends Ecol Evol 21:246–253

    Article  PubMed  Google Scholar 

  • Gottwald H (1992) Hölzer aus marinen Sanden des Oberen Eozän von Helmstedt (Niedersachsen). Palaeontographica Abt. B Paläophytol 225:27–103

    Google Scholar 

  • Gradstein FM, Ogg JO, Smith AG, Bleeker W, Lourens LJ (2004) A new geologic time scale, with special reference to precambrian and neogene. Episodes 27:83–100

    Google Scholar 

  • Gruas-Cavagnetto C (1977) Etude palynologique de l'Éocène du basin angloparisien. Memoir Societé Géol. France 56:1–66

  • Harley MM (1999) Palm pollen: overview and examples of taxonomic value at species level. Mem NY Bot Gard 83:95–120

    Google Scholar 

  • Harley MM (2006) A summary of fossil records of Arecaceae. Bot J Linn Soc 151:39–67

    Article  Google Scholar 

  • Harley MM, Baker WJ (2001) Pollen aperture morphology in Arecaceae: application within phylogenetic analyses, and a summary of the fossil record of palm-like pollen. Grana 40:45–77

    Article  Google Scholar 

  • Harley MM, Dransfield J (2003) Triporate pollen in Arecaceae. Grana 42:3–19

    Article  Google Scholar 

  • Harrington GJ, Jaramillo CA (2007) Paratropical floral extinction in the late Palaeocene–early Eocene. J Geol Soc London 164:323–332

    Article  Google Scholar 

  • Hesse M, Zetter R (2005) Ultrastructure and diversity of recent and fossil zona-aperturate pollen grains. Pl Syst Evol 255:145–176

    Article  Google Scholar 

  • Hesse M, Zetter R (2007) The fossil pollen record of Araceae. Pl Syst Evol 263:93–115

    Article  Google Scholar 

  • Hesse M, Halbritter H, Zetter R, Weber M, Buchner R, Frosch-Radivo A, Ulrich S (2009) Pollen Terminology - An illustrated Handbook. Springer, Wien

  • Heusser CJ (1971) Pollen and spores of Chile. The University of Arizona Press, Tuscon Arizona 167p

    Google Scholar 

  • Hofmann Ch-Ch, Pancost R, Ottner F, Egger H, Taylor K, Zetter R. (2012) Palynology Biomarker and Clay mineralogy od the Early Eocene Climate Optimum (EECO) in the transgressive Krappfels succession (Eastern Alps, Austria) Austrian J Earth Sciences 105:224–239

  • Hofmann Ch-Ch, Zetter R (2001) Palynological investigation of the Krappfeld area, Palaeocene/Eocene, Carinthia (Austria). Palaeontographica Abt. B Paläophytol 259:47–64

    Google Scholar 

  • Hofmann Ch–Ch, Zetter R (2010) Upper cretaceous sulcate pollen from the Timerdyakh formation, Vilui Basin (Siberia). Grana 49:170–193

    Article  Google Scholar 

  • Hofmann Ch–Ch, Zetter R, Draxler I (2002) Pollen und Sporenvergesellschaftungen aus dem Kapartium des Korneuburger Beckens (Niederösterreich). Beit Paläontol 27:17–43

    Google Scholar 

  • Hofmann Ch–Ch, Mohamed O, Egger H (2011) A new terrestrial palynoflora from the Palaeocene/Eocene boundary in the northwestern Tethyan realm (St. Pankraz, Austria). Rev Paleobot Palynol 166:295–310

    Article  Google Scholar 

  • Hollis JC et al (2009) Tropical sea temperatures in the high-latitude South Pacific during the Eocene. Geology 37:99–102

    Article  CAS  Google Scholar 

  • Jaramillo CA, Dilcher DL (2001) Middle Paleogene palynology of Central Colombia, South America: a study of pollen and spores from tropical latitudes. Palaeontographica Abt. B Paläophytol 258:87–213

    Google Scholar 

  • Jaramillo CA, Ochoa D, Contreras L, Pagani M, Caraval-Ortiz H, Pratt LM, Krishnan S, Cardona A, Romero M, Quiroz L, Rodriguez G, Rueda MJ, de la Parra F, Morón S, Gree W, Bayona G, Montes C, Quintero O, Ramirez R, Mora G, Schouten S, Bermudez H, Navarrete R, Parr F, Alvarán M, Osorno J, Crowley JL, Valencia V, Vervoort J (2010) Effects of rapid global warming at the Palaeocene-Eocene boundary on neotropical vegetation. Science 330:957–960

    Article  CAS  PubMed  Google Scholar 

  • Kennet JP, Stott LD (1991) Abrupt deep-sea warming, paleoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353:225–229

    Article  Google Scholar 

  • Knight CL, Wilf P (2013) Rare leaf fossils of Monimiaceae and Atherospermataceae (Laurales) from the Eocene Patagonian rainforests and their biogeographic significance. Palaeontol Electronica 16, 3, 26A, p 39

  • Kräusel R (1939) Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens, IV Die fossilen Floren Ägyptens. Abh Bayer Akad Wiss Math Naturwiss Neue Flg Abt 47:1–140

    Google Scholar 

  • Kvacek Z (2003) Aquatic angiosperms of the early miocene most formation of North Bohemia (Central Europe). Courier Forschungsinstitut Senckenberg 241:255–279

    Google Scholar 

  • Kvacek J, Hermann AB (2005) Monocotyledones from the early campanian (Cretaceous) of Grünbach, lower Austria. Rev Palaeobot Palynol 128:323–353

    Article  Google Scholar 

  • Lee DE, Conran JG, Linsquist JK, Bannister JM, Mildenhall DC (2012) New Zealand Eocene, Oligocene and Miocene macrofossil and pollen records and modern plant distributions in the southern hemisphere. Bot Rev 78:109–260

  • Le Thomas A (1980) Ultrastructural characteristics of pollen grains of African Annonaceae and their significance for their phylogeny of primitive angiosperms. Pollen Spores 22:267–342

    Google Scholar 

  • Lourens LJ, Sluijs A, Kroon D, Zachos JC, Thomas E, Röhl U, Bowles J, Raffi I (2005) Astronomical pacing of late Palaeocene to Eocene global warming events. Nature 435:1083–1087

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Keller G (1993) The Paleocene/Eocene transition in the Antarctic Indian Ocean: inferences from planktic foraminifera. Mar Micropaleontol 21:101–141

    Article  Google Scholar 

  • Markgraf V, D Antoni H (1978) Pollen flora of Argentina. The University of Arizona Press, Tuscon Arizona 208 p

    Google Scholar 

  • Mols JB, Kessler PJA, Rogstad SH, Saunders RMK (2008) Reassignment of six Polyalthia species to the new genus Maasia (Annonaceae): molecular and morphological congruence. Syst Bot 33:490–494

    Article  Google Scholar 

  • Morley RJ (2000) Origin and evolution of tropical rainforests. Wiley, Chickester

    Google Scholar 

  • Nauheimer L, Metzler D, Renner SS (2012) Global history of the ancient monocot family Araceae inferred with models accounting for past continental positions and previous ranges based on fossils. New Phytol 195:938–950

    Article  PubMed  Google Scholar 

  • Pearson N, van Dongen BE, Nicholas CJ, Pancost RD, Schouten S, Singano JM, Wade BS (2007) Stable warm tropical climate through the Eocene Epoch. Geology 35:211–214

    Article  Google Scholar 

  • Pirie MD, Doyle JA (2012) Dating clades with fossils and molecules: the case of Annonaceae. Bot J Linn Soc 169:84–116

    Article  Google Scholar 

  • Poole I, Francis JE (1999) First record of atherospermataceous wood from the upper cretaceous of Antarctica. Rev Palaeobot Palynol 107:97–107

    Article  Google Scholar 

  • Pozhidaev AE (2000) Pollen variety and aperture patterning. In: Harley MM, Morton CM, Blackmore S (eds) Pollen and spores: Morphology and Biology. Royal Botanic Gardens, Kew, pp 205–225

    Google Scholar 

  • Raffi I, Backman J, Zachos JC, Sluijs A (2009) The response of calcareous nannofossil assemblages to the Paleocene Eocene thermal maximum at the Walvis ridge in the South Atlantic. Mar Micropaleontol 70:201–212

    Article  Google Scholar 

  • Reid EM, Chandler MEJ (1933) The London Clay Flora. British Museum, London

    Google Scholar 

  • Renner SS, Foreman DB, Murray D (2000) Timing transantarctic disjunctions in the Atherospermataceae (Laurales): evidence from coding and noncoding chloroplast sequences. Syst Biol 49:579–591

    Article  CAS  PubMed  Google Scholar 

  • Richardson JE, Chatrou LW, Mols JB, Erkens RHJ, Pirie MD (2004) Historical biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae. Philosph Trans R Soc B Biol Sci 359:1495–1508

  • Rogstad SH (1990) The biosystematics and evolution of the Polyalthia hypoleuca Species Complex (Annonaceae) of Malesia. II Comparative distributional Ecology. J Trop Ecol 6:387–408

    Article  Google Scholar 

  • Rogstad SH, Le Thomas A (1989) Pollen characters of the Polyalthia hypoleuca complex (Annonaceae): their significance in establishing monophyly and candidate outgroups. Bull du Muséum natl d’histoire nat Sect B, Adansonia 11:257–278

    Google Scholar 

  • Röhl U, Westerhold T, Bralower TJ, Zachos JC, (2007) On the duration of the Paleocene-Eocene thermal maximum (PETM). Geochemistry Geophysics Geosystems 8/12, doi:10.1029/2007GC001784

  • Sampson FB (1975) Aperture orientation in Laurelia pollen (Atherospermataceae syn subfamily Atherospermatoideae of Monimiaceae). Grana 15:153–157

    Google Scholar 

  • Sampson FB (1996) Pollen morphology and ultrastructure of Laurelia, Laureliopsis and Dryadodaphne (Atherospermataceae (Monimiaceae)). Grana 35:257–265

    Article  Google Scholar 

  • Sampson FB, Foreman DB (1988) Pollen morphology of Atherosperma, Daphnandra and Doryphora (Atheroaspermataceae (Monimiaceae)). Grana 27:17–25

    Article  Google Scholar 

  • Saunders RMK, Su CF, Xue B (2011) Phylogenetic affinities of Polyalthia species (Annonaceae) with columellar-sulcate pollen: enlarging the Madagascan endemic genus Fenerivia. Taxon 60:1407–1416

    Google Scholar 

  • Serra-Kiel J, Hottinger L, Caus E, Drobne K, Ferrandez C, Jaurhi AK, Less G, Pavlovec R, Pignatti J, Samso JM, Schaub H, Sirel E, Strougo A, Tambareau Y, Tosquella J, Zakrevskaya E (1998) Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bull. Soc. Geol. France 169:281–299

    Google Scholar 

  • Sluijs A, Brinkhuis H (2009) A dynamic climate state during the Paleocene-Eocene thermal maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf. Biogeosciences 6:1755–1781

    Article  Google Scholar 

  • Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H, Sinninghe Damsté JS, Dickens JR, Huber M, Reichert GJ, Stein R, Matthiessen J, Lourens LJ, Pendentschouk N, Backman J, Moran K (2006) Subtropical Arctic ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441:610–612

    Article  CAS  PubMed  Google Scholar 

  • Sluijs A, Bowen GJ, Brinkhuis H, Lourens LJ Thomas E (2007) The Palaeocene–EoceneThermal Maximum super greenhouse: biotic and geochemical signatures, age models and mechanisms of global change. In: Williams M, Haywood AM, Gregory J, Schmidt DN (eds) Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies. The Micropalaeontological Society, Special Publications, pp. 323–349, London (Geological Society London)

  • Smith ME, Singer B, Carrol A (2003) 40Ar/39Ar geochronology of the Eocene green river basin. Geol Soc Am Bull 115:549–565

    Article  CAS  Google Scholar 

  • Sternberg L(2012) Pollen morphologische Untersuchungen (LM und REM) an sulkaten Pollenformen aus der Obereozänen Fundstelle Profen (Weiße-Elster-Becken), Deutschland, Diplomarbeit der Universität Wien

  • Stevens PF (2001 onwards) Angiosperm Phylogeny Website. Version 12, July 2012 and more or less continuously updated since. http://www.mobot.org/MOBOT/research/APweb/

  • Stockey RA, Hoffman GL, Rothwell GW (1997) The fossil monocot Limnobiophyllum scutatum: resolving the Phylogeny of Lemnaceae. Amer J Bot 84:355–368

    Article  CAS  PubMed  Google Scholar 

  • Thiele-Pfeiffer H (1988) Die Mikroflora aus dem Mitteleozänen Ölschiefer von Messel bei Darmstadt. Palaeontographica B 211:1–86

  • Thiry M, Dupuis C, Aubry M-P, Berggren WA, Ellison RA, Knox RWO’B, Sinha A, Stott L (1998) Tentative correlations between continental deposits of the argiles plastiques (Paris Basin) and Reading Beds (London Basin), based on chemostratigraphy. Strata 9:125–129

    Google Scholar 

  • Thomas E (2007) Cenozoic mass extinctions in the deep sea: what perturbs the largest habitat on earth? Geol Soc Am Spec Pap 424:1–24

    Google Scholar 

  • Walker JW (1971) Pollen morphology, Phytogeography, and phylogeny of the annonaceae. Contrib Gray Herb 202:1–131

    Google Scholar 

  • Westerhold T, Röhl U, Laskar J, Raffi I, Bowles J, Lourens L, Zachos JC (2007) On the duration of magnetochrons C24r and C25n and the timing of the early Eocene global warming events: Implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect. Paleoceanography, 22, PA2201, doi:10.1029/2006PA001322

  • Westerhold T, Röhl U, McCarren HK, Zachos JC (2009) Latest on the absolute age of the Paleocene-Eocene Thermal Maximum (PETM): new insights from exact stratigraphic position of key ash layers +19 and −17. Earth Planet Sci Lett 287:412–419

    Article  CAS  Google Scholar 

  • Wheeler A, Manchester SR (2002) Woods of the middle Eocene Nut Beds Flora, Clarno Formation Oregon. IAWA J Suppl 3:1–188

    Google Scholar 

  • Wilde V, Kvacek Z, Bogner J (2005) Fossil leaves of the Araceae from the European Eocene and notes on other aroid fossils. Int J Pl Syst 166:157–183

    Article  Google Scholar 

  • Wilf P, Cúneo RN, Johnson KR, Hicks JF, Wing SL, Obradovich JD (2003) High plant diversity in Eocene South America: evidence from Patagonia. Science 300:122–125

    Article  CAS  PubMed  Google Scholar 

  • Wilf P, Johnson KR, Cúneo RN, Smith ME, Singer BS (2005) Eocene plant diversity at Laguna del Hunco and Rio Pichileufú, Patagonia, Argentina. Amer Naturalist 165:634–650

    Article  Google Scholar 

  • Willumsen PS (2004) Palynology of the lower Eocene deposits of northwest Jutland, Denmark. Bull Geol Soc Den 52:141–157

    Google Scholar 

  • Wing SL, Harrington GJ (2001) Floral response to rapid warming in the earliest Eocene and implications for concurrent faunal change. Paleobiology 27:539–563

    Article  Google Scholar 

  • Wing SL, Harrington GJ, Bowen GJ, Koch PL (2003) Floral change during the Initial Eocene Thermal Maximum in the Powder River Basin, Wyoming. In: Aubry MP, Lucas SG, Berggren WA (eds) Late Palaeocene - Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records. Columbia University Press, New York, pp 380–400

    Google Scholar 

  • Wing SL, Harrington GJ, Smith FA, Bloch JI, Boyer DM, Freeman KH (2005) Transient floral change and rapid global warming at the Palaeocene-Eocene boundary. Science 310:993

    Article  CAS  PubMed  Google Scholar 

  • Zachos JC, Mc Carren H, Murphy B, Röhl U, Westerhold T (2010) Tempo and scale of late Paleocene and early Eocene isotope cycles: Implication fort he origin of hyperthermals. Earth Planet Sci Lett 299:242–249

    Article  CAS  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

  • Zetter R, Hofmann Ch–Ch (2001) New aspects of the palynoflora of the lowermost Eocene (Krappfeld Area, Carinthia). Österreichische Akademie der Wissenschaften, Schriftenreihe der Erdwissenschaftlichen Kommission 12:473–507

    Google Scholar 

Download references

Acknowledgments

The first author is very thankful to the deceased Robert W. 'O. B. Knox, who provided the samples of the Brixton drillcores for palynological work. We thank Stjepan Coríc for help during fieldwork in Austria, Markus Kogler for preparing part of fig. 1 and Hugh Rice for correcting the English. This paper is in honour of Robert W. 'O. B. Knox.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa-Charlotte Hofmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, CC., Egger, H. & King, C. LM and SEM investigations of pollen from PETM and EECO localities of Austria and Great Britain: new findings of Atherospermataceae, Annonaceae, Araceae and Arecaceae from the Lower Eocene. Plant Syst Evol 301, 773–793 (2015). https://doi.org/10.1007/s00606-014-1116-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1116-7

Keywords

Navigation