Skip to main content

Advertisement

Log in

Molecular characterization of Dendrobium nobile Lindl., an endangered medicinal orchid, based on randomly amplified polymorphic DNA

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Dendrobium nobile Lindl., is an orchid species of immense biopharmaceutical and horticultural importance. The knowledge of its existent genetic variations within wild accessions is crucial for formulation of sustainable utilization strategies. It is distributed in a large landscape area and can grow at altitudes ranging from 800 to 2,000 m. Given that Orchidaceae is one of the largest families of flowering plants, reports on their existing genetic diversity are extremely limited. Molecular study on D. nobile can provide valuable information about the genetic diversity level and genetic relatedness of this important medicinal orchid species. Knowledge of genetic structure of a species also provides resources of a species with its current feature and future evolutionary potential. The genetic structure of D. nobile from Northeast India was investigated using randomly amplified polymorphic DNA (RAPD).The PIC value of RAPD primers was 0.74 and Rp values ranged between 6.80 and 13.23. Overall the Shannon Index, Global coefficient of genetic differentiation (G ST), showed that relative genetic diversity of the populations was fairly high. However, the low value of gene flow (Nm = 0.27) was revealed by the RAPD marker. The results of analysis of molecular variance (AMOVA) revealed that variation amongst the populations was significantly higher than within the populations. A combination of UPGMA and STRUCTURE analysis was employed to estimate the genetic relationships of D. nobile germplasm; interestingly, both the methods presented similar grouping pattern with few differences. Results revealed that 60 individuals belonging to six natural populations in Northeast India were clustered into two major groups. The data represented in this study suggested that the RAPD method was a valuable tool for estimation of genetic diversity and genetic relatedness of the D. nobile germplasm. The present findings are useful outcomes for germplasm conservation and formulation of new breeding strategies for this extremely important medicinal orchid species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PCR:

Polymerase chain reaction

RAPD:

Random amplified polymorphic DNA

PIC :

Polymorphic information content

AMOVA:

Analysis of molecular variance

Rp :

Resolving power

References

  • Bandyopadhyay S, Raychaudhuri SS (2013) Development and comparison of RAPD, SCAR and AFLP markers for distinguishing some medicinally important species of the genus Phyllanthus. Plant Biosyst Int J Deal with all Asp Plant Biol 147:12–20

    Article  Google Scholar 

  • Bhattacharyya P, Kumaria S, Kumar S, Tandon P (2013) Start codon targetted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species. Gene 529:21–26

    Article  CAS  PubMed  Google Scholar 

  • Borowsky R (2001) Estimating nucleotide diversity from random amplified polymorphic DNA and amplified fragment length polymorphism data

  • Case MA (1993) High levels of allozyme variation within Cypripdeium calceolus (Orchidaceae) and low levels of divergence among its varieties. Syst Bot 18:663–677

    Article  Google Scholar 

  • Case MA (1994) Extensive variation in the levels of genetic diversity and degree of relatedness among five species of Cypripedium (Orchidaceae). Am J Bot 81:175–184

    Article  Google Scholar 

  • Chattopadhyay P, Banerjee N, Chaudhary B (2012) Genetic characterization of selected medicinal Dendrobium (Orchidaceae) species using molecular markers. Res J Biol 2:117–125

    CAS  Google Scholar 

  • Chung MGI (1994) Low levels of genetic diversity within populations of Hosta clausa (Liliaceae). Plant Species Biol 9:177–182

    Article  Google Scholar 

  • Chung MG (1996) Spatial genetic structure among Korean populations of Hosta minor and H. capitata (Liliaceae). Bot Bull Acad Sin 37:25–30

    Google Scholar 

  • Ding G, Zhang D, Ding X (2008) Genetic variation and conservation of the endangered Chinese endemic herb Dendrobium officinale based on SRAP analysis. Plant Syst Evol 276:149–156

    Article  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24(1):217–242

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47

    CAS  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Faria RT, Illg RD (1995) Propagaçao clonal de hıbridos de Dendrobium nobile Lindl. Congr. Bras. Floric. Plantas Ornamentais. pp 40–41

  • Frantz AC, Cellina S, Krier A (2009) Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J Appl Ecol 46:493–505

    Article  Google Scholar 

  • Gerber S, Mariette S, Streiff R (2000) Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Mol Ecol 9:1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Ghafoor A, Sharif A, Ahmad Z (2001) Genetic diversity in blackgram (Vigna mungo L. Hepper). F Crop Res 69:183–190

    Article  Google Scholar 

  • Gitzendanner MA, Soltis PS (2000) Patterns of genetic variation in rare and widespread plant congeners. Am J Bot 87:783–792

    Article  CAS  PubMed  Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources, pp 43–63

  • Hardy OJ (2003) Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Mol Ecol 12:1577–1588

    Article  PubMed  Google Scholar 

  • IUCN/SSC Orchid Specialist Group (1996) Orchids: status survey and conservation action plan. IUCN, Gland

    Google Scholar 

  • Karron JD (1987) A comparison of levels of genetic polymorphism and self-compatibility in geographically restricted and widespread plant congeners. Evol Ecol 1:47–58

    Article  Google Scholar 

  • Karron JD, Linhart YB, Chaulk CA, Robertson CA (1988) Genetic structure of populations of geographically restricted and widespread species of Astragalus (Fabaceae). Am J Bot 75:1114–1119

    Article  Google Scholar 

  • Kumar S, Kumaria S, Tandon P (2013) SPAR methods coupled with seed-oil content revealed intra-specific natural variation in Jatropha curcas L. from Northeast India. Biomass Bioenergy 54:100–106

    Article  CAS  Google Scholar 

  • Lande R (1988) Genetics and demography in biological conservation. Science (Washington) 241:1455–1460

    Article  CAS  Google Scholar 

  • Li A, Ge S (2006) Genetic variation and conservation of Changnienia amoena, an endangered orchid endemic to China. Plant Syst Evol 258:251–260

    Article  CAS  Google Scholar 

  • Li G, Park YJ (2012) SCAR markers for discriminating species of two genera of medicinal plants, Liriope and Ophiopogon. Genet Mol Res GMR 11:2987–2996

    Article  CAS  Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95

    Article  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  PubMed  Google Scholar 

  • Manners V, Kumaria S, Tandon P (2013) SPAR methods revealed high genetic diversity within populations and high gene flow of Vanda coerulea Griff. ex Lindl. (Blue Vanda), an endangered orchid species. Gene 519:91–97

    Article  CAS  PubMed  Google Scholar 

  • Marshall DR, Brown AHD (1975) Optimum sampling strategies in genetic conservation. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. International biological programme 2. Cambridge University Press, London, pp 53–80

  • Maunder M, Culham A, Alden B (2000) Conservation of the Toromiro tree: case study in the management of a plant extinct in the wild. Conserv Biol 14:1341–1350

    Article  Google Scholar 

  • McKay JK, Bishop JG, Lin JZ (2001) Local adaptation across a climatic gradient despite small effective population size in the rare sapphire rockcress. Proc R Soc London Ser B Biol Sci 268:1715–1721

    Article  CAS  Google Scholar 

  • Miller MP (1998) AMOVA-PREP 1.01: a program for the preparation of AMOVA input files from dominant-markers raw data. Comput Softw Distrib 22:927–934

    Google Scholar 

  • Miyazawa M, Shimamura H, Nakamura S, Kameoka H (1997) Antimutagenic activity of gigantol from Dendrobium nobile. J Agric Food Chem 45:2849–2853

    Article  CAS  Google Scholar 

  • Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394

    Article  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ng TB, Liu J, Wong JH (2012) Review of research on Dendrobium, a prized folk medicine. Appl Microbiol Biotechnol 93:1795–1803

    Article  CAS  PubMed  Google Scholar 

  • Nongrum I, Kumar S, Kumaria S, Tandon P (2012) Genetic variation and gene flow estimation of Nepenthes khasiana Hook. F-A threatened insectivorous plant of India as revealed by RAPD markers. J Crop Sci Biotechnol 15:101–105

    Article  Google Scholar 

  • Odong TL, van Heerwaarden J, Jansen J (2011) Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data? Theor Appl Genet 123:195–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peakall R, Beattie AJ (1991) The genetic consequences of worker ant pollination in a self-compatible, clonal orchid. Evolution 45:1837–1848

    Article  Google Scholar 

  • Peeters JP, Martinelli JA (1989) Hierarchical cluster analysis as a tool to manage variation in germplasm collections. Theor Appl Genet 78:42–48

    Article  CAS  PubMed  Google Scholar 

  • Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rasmussen HN (1995) Terrestrial orchids: from seed to mycotrophic plant. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rohlf FJ (1998) NTSYS-pc version 2.0. Numer. Taxon. Multivar. Anal. Syst. Exet. software. Setauket, New York

  • Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619

    Article  Google Scholar 

  • Scheepers D, Eloy MC, Briquet M (1997) Use of RAPD patterns for clone verification and in studying provenance relationships in Norway spruce (Picea abies). Theor Appl Genet 94:480–485

    Article  CAS  Google Scholar 

  • Shah FH, Rashid O, Simons AJ, Dunsdon A (1994) The utility of RAPD markers for the determination of genetic variation in oil palm (Elaeis guineensis). Theor Appl Genet 89:713–718

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Kumaria S, Tandon P, Rao SR (2011) Single primer amplification reaction (SPAR) reveals inter-and intra-specific natural genetic variation in five species of Cymbidium (Orchidaceae). Gene 483:54–62

    Article  CAS  PubMed  Google Scholar 

  • Smith JSC, Chin ECL, Shu H (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor Appl Genet 95:163–173

    Article  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classification

  • Suzuki M, Hayakawa Y, Aoki K (1973) Stereochemistry of intermediates in the syntheses of Dendrobium alkaloids. Tetrahedron Lett 14:331–334

    Article  Google Scholar 

  • Techen N, Parveen I, Pan Z, Khan IA (2014) DNA barcoding of medicinal plant material for identification. Curr Opin Biotechnol 25:103–110

    Article  CAS  PubMed  Google Scholar 

  • Wang HZ, Wu ZX, Lu JJ (2009) Molecular diversity and relationships among Cymbidium goeringii cultivars based on inter-simple sequence repeat (ISSR) markers. Genetica 136:391–399

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Gong Q, Wu Q, Shi J (2010) Neuroprotective effects of Dendrobium alkaloids on rat cortical neurons injured by oxygen-glucose deprivation and reperfusion. Phytomedicine 17:108–115

    Article  PubMed  Google Scholar 

  • Waugh R, Power W (1992) Using RAPD markers for crop improvement. Trends Biotechnol 10:186–191

    Article  CAS  Google Scholar 

  • Wilding CS, Butlin RK, Grahame J (2001) Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J Evol Biol 14:611–619

    Article  CAS  Google Scholar 

  • Wong KC, Sun M (1999) Reproductive biology and conservation genetics of Goodyera procera (Orchidaceae). Am J Bot 86:1406–1413

    Article  CAS  PubMed  Google Scholar 

  • Wu HF, Li ZZ, Huang HW (2006) Genetic differentiation among natural populations of Gastrodia elata (Orchidaceae) in Hubei and germplasm assessment of the cultivated populations. Biodivers Sci 14:315–326

    Article  Google Scholar 

  • Xiao M, Li Q, Guo L (2006) AFLP analysis of genetic diversity of the endangered species Sinopodophyllum hexandrum in the Tibetan region of Sichuan Province, China. Biochem Genet 44:44–57

    Article  Google Scholar 

  • Xu F, Guo W, Xu W, Wang R (2008) Habitat effects on leaf morphological plasticity. Acta Biol Cracoviensia Ser Bot 50:19–26

    Google Scholar 

  • Yang L, Qin LH, Bligh SW (2006) A new phenanthrene with a spirolactone from Dendrobium chrysanthum and its anti-inflammatory activities. Bioorg Med Chem 14:3496–3501

    Article  CAS  PubMed  Google Scholar 

  • Yang LC, Deng H, Yi Y (2010) Identification of medical Dendrobium herbs by ISSR marker. J Chinese Med Mater 33:1841–1844

    CAS  Google Scholar 

  • Yeh FC, Yang R, Boyle T (1999) POPGENE VERSION 1.31: Microsoft Window-based Freeware for Population Genetic Analysis, Quick user guide. University of Alberta, Edmonton, Canada

  • Yoon MY, Hwang JH, Park JH (2011) Neuroprotective effects of SG-168 against oxidative stress-induced apoptosis in PC12 cells. J Med Food 14:120–127

    Article  PubMed  Google Scholar 

  • Zhang ZY, Chen Y–Y, Li DZ (2005) Detection of low genetic variation in a critically endangered Chinese pine, Pinus squamata, using RAPD and ISSR markers. Biochem Genet 43:239–249

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Ye Q, Tan X (2001) Three new sesquiterpene glycosides from Dendrobium nobile with immunomodulatory activity. J Nat Prod 64:1196–1200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research work was supported by the Centre for Advanced Studies (CAS) in Botany, University Grants Commission (UGC), India and research grant to PB in the form of Meritorious Student Fellowship which is gratefully acknowledged. PB also acknowledges Dr. Shrawan Kumar, Dr. Santosh Kumar Sharma and Dr. Sourav Kumar Das for their technical assistance provided during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Kumaria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

606_2014_1065_MOESM1_ESM.jpg

Fig. S1 The highest probability of the RAPD data was attained when samples were clustered into two groups (K = 2) as shown by the peak value of ∆K (Evanno et al., 2005). (JPEG 42 kb)

Supplementary material 2 (DOC 38 kb)

Supplementary material 3 (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, P., Kumaria, S. Molecular characterization of Dendrobium nobile Lindl., an endangered medicinal orchid, based on randomly amplified polymorphic DNA. Plant Syst Evol 301, 201–210 (2015). https://doi.org/10.1007/s00606-014-1065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1065-1

Keywords

Navigation