Skip to main content
Log in

Sex-dependent selection on flower size in a large-flowered Mediterranean species: an experimental approach with Cistus ladanifer

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Larger flowers increase pollinator visit rates and reproductive success, so selection on flower size is usually mediated by pollinators. However, larger flowers involve costs imposed by resource limitation so environmental conditions may also modulate flower size. “Male function” hypothesis entails that the intensity of selection is sex-dependent, being greater through male fitness, whereas female fitness is more limited by resources. In this study we analyse pollinator-mediated phenotypic selection on flower size through both sexes in a large-flowered Mediterranean species, Cistus ladanifer. We experimentally manipulated flower size in two populations, measured its effect on male and female fitness and estimated the strength and direction of phenotypic selection through both sexes and populations. Unmanipulated control flowers received higher pollinator visit rates and dispersed a higher pollen amount than reduced flowers. This translated into selection towards larger flowers through male fitness in both populations. Nevertheless, flower size had little effect on female fitness. Fruit set was high but selection through this component of female function was not significant. Seed number increased in control flowers, especially in one population, where we detected positive selection on flower size. Our results suggest that pollinator-mediated phenotypic selection on flower size in this large-flowered Mediterranean species is especially modulated by male fitness, but flower size adjustment may also be a result of a simultaneous selection through both sexes that, in turn, is dependent of ecological context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aigner PA (2005) Variation in pollination performance gradients in a Dudleya species complex, can generalization promote floral divergence? Func Ecol 19:681–689

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46

    Google Scholar 

  • Aragón CF, Escudero A, Valladares F (2008) Stress-induced dynamic adjustments of reproduction differentially affect fitness components of a semi-arid plant. J Ecol 96:222–229

    Google Scholar 

  • Arista M, Ortiz PL (2007) Differential gender selection on floral size: an experimental approach using Cistus salviifolius. J Ecol 95:973–982

    Article  Google Scholar 

  • Ashman T-L, Majestic CJ (2006) Genetic constraints on floral evolution: a review and evaluation of patterns. Heredity 96:343–352

    Article  PubMed  Google Scholar 

  • Ashman T-L, Morgan MT (2004) Explaining phenotypic selection on plant attractive characters: male function, gender balance or ecological context? Proc R Soc Lond B 271:553–559

    Article  Google Scholar 

  • Bateman AJ (1948) Intra-sexual variation in Drosophila. Heredity 2:349–368

    Article  CAS  PubMed  Google Scholar 

  • Bartkowska MP, Johnston MA (2012) Pollinators cause stronger selection than herbivores on floral traits in Lobelia cardinalis (Lobeliaceae). New Phytol 193:1039–1048

  • Bell G (1985) On the function of flowers. Proc R Soc Lond B 224:223–265

    Article  Google Scholar 

  • Bosch J (1992) Floral biology and pollinators of three co-occurring Cistus species (Cistaceae). Bot J Linn Soc 109:39–55

    Article  Google Scholar 

  • Brys R, Jacquemyn H (2010) Floral display size and spatial distribution of potential mates affect pollen deposition and female reproductive success in distylous Pulmonaria officinalis (Boraginaceae). Plant Biol 12:597–603

    CAS  PubMed  Google Scholar 

  • Burd M, Callahan HS (2000) What does the male function hypothesis claim? J Evol Biol 13:735–742

    Article  Google Scholar 

  • Cardel YJ, Koptur S (2010) Effects of florivory on the pollination of flowers: an experimental study with a perennial plant. Int J Plant Sci 171:283–292

    Article  Google Scholar 

  • Caruso CM (2001) Differential selection on floral traits of Ipomopsis aggregata growing in contrasting environments. Oikos 94:295–302

    Article  Google Scholar 

  • Caruso CM, Peterson SB, Ridley CE (2003) Natural selection on floral traits of Lobelia (Lobeliaceae): spatial and temporal variation. Am J Bot 90:1333–1340

    Article  PubMed  Google Scholar 

  • Chapman T (2006) Evolutionary conflicts of interest between males and females. Curr Biol 16:744–754

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Conner JK (2006) Ecological genetics of floral evolution. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford University Press, Oxford, pp 260–277

    Google Scholar 

  • Conner JK, Rush S (1996) Effects of flower size and number on pollinator visitation to wild radish, Raphanus raphanistrum. Oecologia 105:509–516

    Article  Google Scholar 

  • Cresswell JE (1998) Stabilizing selection and the structural variability of flowers within species. Ann Bot 81:463–473

    Article  Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Syst 35:375–403

    Article  Google Scholar 

  • Fishman L, Willis JH (2008) Pollen limitation and natural selection on floral characters in the yellow monkeyflower, Mimulus guttatus. New Phytol 177:802–810

  • Galen C (1989) Measuring pollinator-mediated selection on morphometric floral traits: bumblebees and the alpine sky pilot, Polemonium viscosum. Evolution 43:882–890

    Article  Google Scholar 

  • Galen C (1996) Rates of floral evolution: adaptation to bumblebee pollination in an alpine wildflower, Polemonium viscosum. Evolution 50:120–125

    Article  Google Scholar 

  • Galen C (1999) Why do flowers vary? The functional ecology of variation in flower size and form within natural plant populations. Bioscience 49:631–640

    Article  Google Scholar 

  • Galen C (2005) It never rains but then it pours: the diverse effects of water on flower integrity and function. In: Reekie E, Bazzaz FA (eds) Reproductive allocation in plants. Elsevier Academic Press, San Diego, pp 77–95

    Chapter  Google Scholar 

  • Galen C, Sherry RA, Carroll AB (1999) Are flowers physiological sinks or faucets? Costs and correlates of water use by flowers of Polemonium viscosum. Oecologia 118:461–470

    Article  Google Scholar 

  • Ghazoul J (2006) Floral diversity and the facilitation of pollination. J Ecol 94:295–304

    Article  Google Scholar 

  • Guzmán B, Narbona E, Vargas P (2013) Investigating reproductive incompatibility barriers in a Mediterranean rockrose (Cistus ladanifer). Plant Bios. doi:10.1080/11263504.2013.801369

    Google Scholar 

  • Haig D, Westoby M (1988) Inclusive fitness, seed resources, and maternal care. In: Lovett Doust J, Lovett Doust L (eds) Plant reproductive ecology: patterns and strategies. Oxford University Press, New York, pp 60–79

    Google Scholar 

  • Halpern SL, Adler LS, Wink M (2010) Leaf herbivory and drought stress affect floral attractive and defensive traits in Nicotiana quadrivalvis. Oecologia 163:961–971

    Article  PubMed  Google Scholar 

  • Harder LD, Johnson SD (2009) Darwin’s beautiful contrivances: evolutionary and functional evidence for floral adaptation. New Phytol 183:530–545

    Article  PubMed  Google Scholar 

  • Herrera J (1992) Flower variation and breeding systems in the Cistaceae. Plant Syst Evol 179:245–255

    Article  Google Scholar 

  • Herrera CM (1995) Microclimate and individual variation in pollinators: flowering plants are more than their flowers. Ecology 76:1516–1524

    Article  Google Scholar 

  • Herrera CM (1996) Floral traits and plant adaptation to insect pollinators, a devil’s advocate approach. In: Lloyd DG, Barrett SCH (eds) Floral biology: studies on floral evolution in animal-pollinated plants. Chapman and Hall, New York, pp 65–87

    Chapter  Google Scholar 

  • Herrera CM, Castellanos MC, Medrano M (2006) Geographical context of floral evolution: towards an improved research programme in floral diversification. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford University Press, New York, pp 278–294

    Google Scholar 

  • Hodgins KA, Barrett SCH (2008) Natural selection on floral traits through male and female function in wild populations of the heterostylous daffodil Narcissus triandrus. Evolution 62:1751–1763

    Article  PubMed  Google Scholar 

  • Holland JN, Bronstein JL, DeAngelis DL (2004) Testing hypotheses for excess flower production and low fruit-to-flower ratios in a pollinating seed-consuming mutualism. Oikos 105:633–640

    Article  Google Scholar 

  • Johnson SD (1996) Pollination, adaptation and speciation models in the Cape flora of South Africa. Taxon 45:59–66

    Article  Google Scholar 

  • Johnson SD, Midgley JJ (1997) Fly pollination of Gorteria diffusa (Asteraceae), and a possible mimetic function for dark spots. Am J Bot 84:429–436

    Article  Google Scholar 

  • Jones AG (2008) On the opportunity for sexual selection, the Bateman gradient and maximum intensity of sexual selection. Evolution 63:1673–1684

    Article  Google Scholar 

  • Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, Hoang A, Gilbert P, Beerli P (2001) The strength of phenotypic selection in natural populations. Am Nat 157:245–261

    Article  CAS  PubMed  Google Scholar 

  • Krupnick GA, Weis AE, Campbell DR (1999) The consequences of floral herbivory for pollinator service to Isomeris arborea. Ecology 80:125–134

    Article  Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226

    Article  Google Scholar 

  • Larcher W (2000) Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Bios 134:279–295

    Article  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for mixed models. SAS Institute Incorporation, New York

    Google Scholar 

  • Lloyd DG (1980) Sexual strategies in plants. I. An hypothesis of serial adjustment of maternal investment during one reproductive success. New Phytol 86:69–79

    Article  Google Scholar 

  • Maad J, Alexandersson R (2004) Variable selection in Platanthera bifolia (Orchidaceae): phenotypic selection differed between sex functions in a drought year. J Evol Biol 17:642–650

    Article  CAS  PubMed  Google Scholar 

  • McCall AC, Irwin RE (2006) Florivory: the intersection of pollination and herbivory. Ecol Lett 9:1351–1365

    Article  PubMed  Google Scholar 

  • Muñoz-Garmendía F, Navarro C (1993) Cistaceae. In: Castroviejo S, Aedo C, Gómez-Campo M et al (eds) Flora Iberica. CSIC, Madrid, pp 318–436

    Google Scholar 

  • Narbona E, Guzmán B, Arroyo J, Vargas P (2010) Why are fruits of Cistus ladanifer (Cistaceae) so variable? A multi-level study across the western Mediterranean region. Perspect Plant Ecol 12:305–315

    Article  Google Scholar 

  • Nattero J, Cocucci AA, Medel R (2010a) Pollinator-mediated selection in a specialized pollination system: matches and mismatches across populations. J Evol Biol 23:1957–1968

    Article  CAS  PubMed  Google Scholar 

  • Nattero J, Sérsic AN, Cocucci AA (2010b) Patterns of contemporary phenotypic selection and flower integration in the hummingbird-pollinated Nicotiana glauca between populations with different flower-pollinator combinations. Oikos 119:852–863

    Article  Google Scholar 

  • Nattero J, Malerba R, Medel R, Cocucci A (2011) Factors affecting pollinator movement and plant fitness in a specialized pollination system. Plant Syst Evol 296:77–85

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2005) Atlas climático digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, Barcelona. ISBN 932860-8-7. http://opengis.uab.es/wms/iberia/. Accessed 20 July 2013

  • Parachnowitsch AL, Kessler A (2010) Pollinators exert natural selection on flower size and floral display in Penstemon digitalis. New Phytol 188:393–402

  • Quinn G, Keough M (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN 3-900051-07-0, http://www.R-project.org

  • Sahli HF, Conner JK (2011) Testing for conflicting and nonadditive selection: floral adaptation to multiple pollinators through male and female fitness. Evolution 65:1457–1473

    Article  PubMed  Google Scholar 

  • Shykoff JA, Bucheli E, Kaltz O (1996) Flower lifespan and disease risk. Nature 379:779–780

    Article  CAS  Google Scholar 

  • Sletvold N, Ågren J (2010) Pollinator-mediated selection on floral display and spur length in the orchid Gymnadenia conopsea. Int J Plant Sci 171:999–1009

    Article  Google Scholar 

  • Sletvold N, Trunschke J, Wimmergren C, Ågren J (2012) Separating selection by diurnal and nocturnal pollinators on floral display and spur length in Gymnadenia conopsea. Ecology 93:1880–1891

    Article  PubMed  Google Scholar 

  • Snow AA, Lewis PO (1993) Reproductive traits and male fertility in plants: empirical approaches. Ann Rev Ecol Syst 24:331–351

    Google Scholar 

  • Stanton ML, Snow AA, Handel SN (1986) Floral evolution: attractiveness to pollinators increases male fitness. Science 232:1625–1627

    Article  CAS  PubMed  Google Scholar 

  • Stinchcombe JR, Agrawal AF, Hohenlohe PA, Arnold SJ, Blows MW (2008) Estimating nonlinear selection gradients using quadratic regression coefficients: double or nothing? Evolution 62:2435–2440

    Article  PubMed  Google Scholar 

  • Talavera S, Gibbs PE, Herrera J (1993) Reproductive biology of Cistus ladanifer (Cistaceae). Plant Syst Evol 186:123–134

    Article  Google Scholar 

  • Talavera S, Bastida F, Ortiz PL, Arista M (2001) Pollinator attendance and reproductive success in Cistus libanotis L. (Cistaceae). Int J Plant Sci 162:343–352

    Article  Google Scholar 

  • Teixido AL (2013) Indirect costs counteract the effects of pollinator-mediated phenotypic selection on corolla size in the Mediterranean shrub Halimium atriplicifolium. J Plant Ecol. doi:10.1093/jpe/rtt043

    Google Scholar 

  • Teixido AL, Valladares F (2013) Large and abundant flowers increase indirect costs of corollas: a study of coflowering sympatric Mediterranean species of contrasting flower size. Oecologia 173:73–81

    Article  PubMed  Google Scholar 

  • Teixido AL, Valladares F (2014) Disproportionate carbon and water maintenance costs of large corollas in hot Mediterranean ecosystems. Perspect Plant Ecol 16:83–92

  • Teixido AL, Méndez M, Valladares F (2011) Flower size and longevity influence florivory in the large-flowered shrub Cistus ladanifer. Acta Oecol 37:418–421

    Article  Google Scholar 

  • Thomas MM, Rudall PJ, Ellis AG, Savolainen V, Glover BJ (2009) Development of a complex floral trait: the pollinator attracting petal spots of the beetle daisy, Gorteria diffusa (Asteraceae). Am J Bot 96:2184–2196

    Article  PubMed  Google Scholar 

  • Thompson JD (2001) How do visitation patterns vary among pollinators in relation to floral display and floral design in a generalist pollination system? Oecologia 126:386–394

    Article  Google Scholar 

  • Thompson JD (2005) Plant evolution in the Mediterranean. Oxford University Press, New York

    Book  Google Scholar 

  • Totland Ø (2001) Environment-dependent pollen limitation and selection on floral traits in an alpine species. Ecology 82:2233–2244

    Article  Google Scholar 

  • Totland Ø (2004) No evidence for a role of pollinator discrimination in causing selection on flower size through female function. Oikos 106:558–564

    Article  Google Scholar 

  • van Kleunen M, Ritland K (2004) Predicting evolution of floral traits associated with mating system in a natural plant population. J Evol Biol 17:1389–1399

    Article  CAS  PubMed  Google Scholar 

  • Wade MJ (1979) Sexual selection and variance in reproductive success. Am Nat 114:742–747

    Article  Google Scholar 

  • Weiss J, Delgado-Benarroch L, Egea-Cortines M (2005) Genetic control of floral size and proportions. Int J Dev Biol 49:513–525

    Article  CAS  PubMed  Google Scholar 

  • Willmer P (2011) Pollination and floral ecology. Princeton University Press, Princeton

    Book  Google Scholar 

Download references

Acknowledgments

We are grateful to J.F. Scheepens and an anonymous reviewer for providing constructive comments to improve the manuscript. A. Greylak reviewed the English. We also thank Drs. J.C. Moreno and V. Mazimpaka for laboratory assistance. We are also grateful to C. García-Agulló for fieldwork support. M.B. held a collaboration grant at Autónoma University of Madrid, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto L. Teixido.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrio, M., Teixido, A.L. Sex-dependent selection on flower size in a large-flowered Mediterranean species: an experimental approach with Cistus ladanifer . Plant Syst Evol 301, 113–124 (2015). https://doi.org/10.1007/s00606-014-1058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1058-0

Keywords

Navigation