Skip to main content
Log in

Maytenus obtusifolia Mart. (Celastraceae): a tropical woody species in a transitional evolutionary stage of the gynodioecy–dioecy pathway

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

‘Gynodioecy–dioecy’ is one of the pathways by which dioecy can arise from hermaphroditism. Studies on sex determination and development of gynodioecious systems have focused on temperate and/or annual species. Little is known about the evolutionary dynamics of gynodioecy and dioecy in perennial tropical species, where these systems have more frequently evolved. Maytenus obtusifolia is an abundant species in restingas in southeastern Brazil. The sexual system of M. obtusifolia was investigated by studying the floral structure and reproductive biology. We considered the sexual system as an intermediate step in the pathway gynodioecy-dioecy. The characterization of the hermaphrodite morph was complex, because of a gradient of variation in floral morphology and reproductive characteristics (sizes of the style and stigmatic surface, pollen viability, embryo sacs containing hypertrophied synergids, and fruit set). This variation leads to different proportions of functional male and female flowers among hermaphrodite plants and is responsible for the different levels of reproductive success. Female reproductive success and pollen viability were negatively correlated with the hermaphrodite morph (r = −0.67). The higher fruiting intensity and fruit/flower ratio of females (41 %) compared to hermaphrodites (2 %) and the fact that female plants produce more and better-quality seeds support the female compensation. We suggest that female sterility may be linked to the set of changes in the carpels. The differences in the quality and quantity of pollen grains of hermaphrodite plants, and the similar individual rates of pollen viability observed for three consecutive flowering events, may indicate a relationship with nuclear cytoplasmic sex determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amaral LIV, Pereira MF, Cortelazzo AL (2001) Formação das substâncias de reserva durante o desenvolvimento de sementes de urucum (Bixa orellana L.-Bixaceae). Acta Bot Bras 15:125–132

    Article  Google Scholar 

  • Ashman TL (1999) Determinants of sex allocation in a gynodioecious strawberry. J Evol Biol 12:648–661

    Article  Google Scholar 

  • Ashman TL (2006) The evolution of separate sexes: a focus on the ecological context. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford University Press, Oxford, pp 204–222

    Google Scholar 

  • Atlan A, Gouyon PH, Fournial T, Pomente D, Couvet D (1992) Sex allocation in an hermaphroditic plant: the case of gynodioecy in Thymus vulgaris L. J Evol Biol 5:189–203

    Article  Google Scholar 

  • Bailey MF (2002) A cost of restoration of male fertility in a gynodioecious species, Lobelia siphilitica. Evolution 56:2178–2186

    PubMed  Google Scholar 

  • Bailey MF, Delph LF (2007a) A field guide to models of sex-ratio evolution in gynodioecious species. Oikos 116:1609–1617

    Article  Google Scholar 

  • Bailey MF, Delph LF (2007b) Sex-ratio evolution in nuclear-cytoplasmic gynodioecy when restoration is a threshold trait. Genetics 176:2465–2476

    Article  PubMed  Google Scholar 

  • Barrett SCH (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284

    Article  PubMed  CAS  Google Scholar 

  • Barrett SCH (2010) Understanding plant reproductive diversity. Phil Trans R Soc B 365:99–109

    Article  PubMed  Google Scholar 

  • Bawa KS (1980) Evolution of dioecy in flowering plants. Annu Rev Ecol Syst 11:15–39

    Article  Google Scholar 

  • Brizicky GK (1964) The genera of Celastrales in the southeastern United States. J Arnold Arboretum 45:206–218

    Google Scholar 

  • Callegari-Jacques SM (2003) Bioestatística: Princípios e Aplicações. Artmed, Porto Alegre

    Google Scholar 

  • Carvalho-Okano RM (1992) Estudos taxonômicos do gênero Maytenus Mol. emend. Mol. (Celastraceae) do Brasil extra-amazônico. PhD diss. Universidade Estadual de Campinas, Campinas

  • Charlesworth D (2002) Plant sex determination and sex chromosomes. Heredity 88:94–101

    Article  PubMed  Google Scholar 

  • Chase C (2006) Cytoplasmic male sterility: a window to the world of plant mitochondrial–nuclear interactions. Trends Genet 23(2):81–90

    Article  PubMed  Google Scholar 

  • De Haan AA, Hundscheid MPJ, Van Hinsberg A (1997) Effects of CMS types and restorer alleles on plant performance in Plantago lanceolata L.: an indication for cost of restoration. J Evol Biol 10:803–820

    Article  Google Scholar 

  • Delph LF (1990) The evolution of gender dimorphism in New Zealand Hebe (Scrophulariaceae) species. Evol Trend Plant 4:85–97

    Google Scholar 

  • Delph LF, Wolf DE (2005) Evolutionary consequences of gender plasticity in genetically dimorphic breeding systems. New Phytol 166:119–128

    Article  PubMed  Google Scholar 

  • Dufay M, Vaudey V, De Cauwer I, Touzet P, Cuguen J, Arnaud JF (2008) Variation in pollen production and pollen viability in natural populations of gynodioecious Beta vulgaris ssp maritima: evidence for a cost of restoration of male function? J Evol Biol 21:202–212

    PubMed  CAS  Google Scholar 

  • Dufay M, Lahiani E, Brachi B (2010) Gender variation and inbreeding depression in gynodioecious-gynomonoecious Silene nutans (Caryophyllaceae). Int J Plant Sci 171(1):53–62

    Article  Google Scholar 

  • Fournier LA (1974) Un método cuantitativo para la medición de características fenológicas en árboles. Turrialba 24:422–423

    Google Scholar 

  • Gahan PB (1984) Plant histochemistry and cytochemistry: an introduction. Academic Press Inc., London

    Google Scholar 

  • Gibson JP, Diggle PK (1997) Structural analysis of female and hermaphroditic flowers of a gynodioecious tree, Ocotea tenera (Lauraceae). Am J Bot 84(3):298–307

    Article  PubMed  CAS  Google Scholar 

  • Johansen DA (1940) Plant Microtecnique. McGraw-Hill, London

    Google Scholar 

  • Johri BM (1984) Embryology of angiosperms. Springer, New York

    Book  Google Scholar 

  • Koelewijn HP, Van Damme JMM (1996) Gender variation, partial male sterility and labile sex expression in gynodioecious Plantago coronopus. Genetics 139:1759–1775

    Google Scholar 

  • Langeron M (1949) Précis de Microscopie. Masson et Cie, Paris

    Google Scholar 

  • Lewis DG (1941) Male sterility in natural populations of hermaphrodite plants. New Phytol 40:56–63

    Article  Google Scholar 

  • Lloyd DG (1974) Theoretical sex ratios of dioecious and gynodioecious angiosperms. Heredity 32:11–34

    Article  Google Scholar 

  • Lloyd DG (1975) The maintenance of gynodioecy and androdioecy in angiosperms. Genetica 45:325–339

    Article  Google Scholar 

  • Maclean RC, Ivimey-Cook WR (1952) Textbook of Practical Botany. Longmans Greenands Co., London

    Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill Book Company, Inc, New York

    Google Scholar 

  • Mantovani A, Iglesias RR (2001) Bromélias terrestres na restinga de Barra de Maricá, Rio de Janeiro: Influência sobre o microclima, o solo e a estocagem de nutrientes em ambientes de borda de moitas. Leandra 16:17–37

    Google Scholar 

  • Martin FW (1959) Staining and observing pollen tubes in the style by means of fluorescence. Stain Technol 34:125–128

    PubMed  CAS  Google Scholar 

  • Matthews ML, Endress PK (2005) Comparative floral structure and systematics in Celastrales (Celastraceae, Parnassiaceae, Lepidobotryaceae). Bot J Linn Soc 149:129–194

    Article  Google Scholar 

  • Mu X, Jin B, Teng N (2010) Studies on the early development of zygotic and synergid embryo and endosperm in polyembryonic rice ApIII. Flora 205:404–410

    Article  Google Scholar 

  • Radford AE, Dickinson WC, Massey JR, Bell CR (1974) Vascular plant systematic. Harper and Row, New York

    Google Scholar 

  • Ramsey M, Vaughton G (2001) Sex expression and sexual dimorphism in subdioecious Wurmbea dioica (Colchicaceae). Int J Plant Sci 162:589–597

    Article  Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606

    Article  Google Scholar 

  • Russell SD (1993) The egg cell: development and role in fertilization and early embryogenesis. Plant Cell 5:1349–1359

    PubMed  Google Scholar 

  • Russell SD (1996) Attraction and transport of male gametes for fertilization. Sex Plant Reprod 9:337–342

    Article  Google Scholar 

  • Sebsebe D (1985) The genus Maytenus (Celastraceae) in NE tropical Africa and tropical Arabia. Symbolae Botanicae Upsaliensis 25:1–101

    Google Scholar 

  • Silveira M (1998) Preparo de amostras biológicas para microscopia eletrônica de varredura. In: DE Souza W (ed) Técnicas Básicas de Microscopia Eletrônica Aplicada as Ciências Biológicas. Sociedade Brasileira de Microscopia, Rio de Janeiro, pp 33–34

    Google Scholar 

  • Spigler RB, Ashman TL (2012) Gynodioecy to dioecy: are we there yet? Ann Bot 109:531–543

    Article  PubMed  Google Scholar 

  • StatSoft Inc (2005) STATISTICA (data analysis software systems), version 7.1. http://www.Statsoft.com

  • Taboga SR, Vilamaior PSL (2001) Citoquímica. In: Carvalho HF, Recco-Pimentel SM (eds) A Célula. Barueri. Manoli Ltda, São Paulo

  • Torrices R, Méndez M, Gómez JM (2011) Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms. New Phytol 190:234–248

    Article  Google Scholar 

  • Vamosi JC, Otto S, Barrett SCH (2003) Phylogenetic analysis of the ecological correlates of dioecy in angiosperms. J Evol Biol 16:1006–1018

    Article  PubMed  CAS  Google Scholar 

  • Van Damme JMM (1983) Gynodioecy in Plantago lanceolata L. Inheritance of three male sterility types. Heredity 50:253–273

    Article  Google Scholar 

  • Vieira S (1981) Introdução à Bioestatística. Ed. Campus Ltda, Rio de Janeiro

  • Webb CJ (1999) Empirical studies: evolution and maintenance of dimorphic breeding systems. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 61–95

    Chapter  Google Scholar 

  • Wolfe LM, Shmida A (1997) The ecology of sex expression in a gynodioecious Israeli desert shrub (Ochradenus baccatus). Ecology 78:101–110

    Google Scholar 

Download references

Acknowledgments

We thank the editor and the anonymous reviewers for their helpful comments, Dr. Bárbara Sá-Haiad (Universidade Federal do Rio de Janeiro) for helpful comments on the manuscript, and Drs. Cátia Mello Patiu and Márcia Souto Couri (Universidade Federal do Rio de Janeiro) for the identification of the insects. This study is part of the Ph.D. Thesis work of C. R. B. and the Master’s thesis of I. V. N. H., carried out in the Postgraduate Program in Biological Sciences (Botany) of the Universidade Federal do Rio de Janeiro (UFRJ), Museu Nacional, Rio de Janeiro, Brazil. LG thanks SECYT (UNC) and CONICET. This work was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and was written with the technical assistance of Publicase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristine R. Benevides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benevides, C.R., Haddad, I.V.N., Barreira, N.P. et al. Maytenus obtusifolia Mart. (Celastraceae): a tropical woody species in a transitional evolutionary stage of the gynodioecy–dioecy pathway. Plant Syst Evol 299, 1693–1707 (2013). https://doi.org/10.1007/s00606-013-0826-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0826-6

Keywords

Navigation