Skip to main content
Log in

Phylogeny and genetic diversity of D-genome species of Aegilops and Triticum (Triticeae, Poaceae) from Iran based on microsatellites, ITS, and trnL-F

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Cereal species of the grass tribe Triticeae are economically important and provide staple food for large parts of the human population. The Fertile Crescent of Southwest Asia harbors high genetic and morphological diversity of these species. In this study, we analyzed genetic diversity and phylogenetic relationships among D genome-bearing species of the wheat relatives of the genus Aegilops from Iran and adjacent areas using allelic diversity at 25 nuclear microsatellite loci, nuclear rDNA ITS, and chloroplast trnL-F sequences. Our analyses revealed high microsatellite diversity in Aegilops tauschii and the D genomes of Triticum aestivum and Ae. ventricosa, low genetic diversity in Ae. cylindrica, two different Ae. tauschii gene pools, and a close relationship among Ae. crassa, Ae. juvenalis, and Ae. vavilovii. In the latter species group, cloned sequences revealed high diversity at the ITS region, while in most other polyploids, homogenization of the ITS region towards one parental type seems to have taken place. The chloroplast genealogy of the trnL-F haplotypes showed close relationships within the D genome Aegilops species and T. aestivum, the presence of shared haplotypes in up to three species, and up to three different haplotypes within single species, and indicates chloroplast capture from an unidentified species in Ae. markgrafii. The ITS phylogeny revealed Triticum as monophyletic and Aegilops as monophyletic when Amblyopyrum muticum is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434

    Article  CAS  PubMed  Google Scholar 

  • Badaeva ED, Friebe B, Gill BS (1996) Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 39:293–306

    Article  CAS  PubMed  Google Scholar 

  • Badaeva ED, Amosova AV, Muvavenko OV, Samatadze TE (2002) Genome differentiation in Aegilops. 3. Evolution of the D-genome cluster. Plant Syst Evol 231:163–190

    Article  CAS  Google Scholar 

  • Baum BR, Edwards T, Johnson DA (2009) Phylogenetic relationships among diploid Aegilops species inferred from 5S rDNA units. Mol Phylogenet Evol 53:34–44

    Article  CAS  PubMed  Google Scholar 

  • Blattner FR (1999) Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. Biotechniques 29:1180–1186

    Google Scholar 

  • Blattner FR (2004) Phylogeny of Hordeum (Poaceae) as inferred by nuclear rDNA ITS sequences. Mol Phylogenet Evol 33:289–299

    Article  CAS  PubMed  Google Scholar 

  • Bredemeijer GMM, Arens P, Wouters D, Visser D, Vosman B (1998) The use of semi-automated fluorescent microsatellite analysis for tomato cultivar identification. Theor Appl Genet 97:584–590

    Article  CAS  Google Scholar 

  • Chalupska C, Lee HY, Faris JD, Evrard A, Chalhoub B, Haselkorn R, Gronicki P (2008) Acc homoeoloci and the evolution of the wheat genomes. Proc Natl Acad Sci USA 105:9691–9696

    Article  CAS  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Dudnikov AJ, Kawahara T (2006) Aegilops tauschii: genetic variation in Iran. Genet Res Crop Evol 53:579–586

    Article  Google Scholar 

  • Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    Article  CAS  Google Scholar 

  • Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am 244:102–112

    Article  Google Scholar 

  • Gandhi HT, Vales MI, Watson CJW, Mallory-Smith CA, Mori N, Rehman M, Zemetra RS, Riera-Lizarazu O (2005) Chloroplast and nuclear microsatellite analysis of Aegilops cylindrica. Theor Appl Genet 111:561–572

    Article  CAS  PubMed  Google Scholar 

  • Gawel NJ, Jarret RL (1991) A modified CTAB extraction procedure for Musa and Ipomoea. Plant Mol Biol Rep 9:262–266

    Article  CAS  Google Scholar 

  • Goryunova SV, Kochieva EZ, Chikida NN, Pukhalskyi VA (2004) Phylogenetic relationships and intraspecific variation of D-genome Aegilops L. as revealed by RAPD analysis. Russ J Genet 40:515–523

    Article  CAS  Google Scholar 

  • Hammer K (1980) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. Kulturpflanze 28:33–180

    Article  Google Scholar 

  • Hsiao C, Chatterton NJ, Asay KH, Jensen KB (1995) Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome 38:211–223

    Article  CAS  PubMed  Google Scholar 

  • Jaaska V (1978) Electrophoretic study of acid phosphatase isoenzymes in the grass genus Aegilops. Biochem Physiol Pflanz 172:135–153

    Google Scholar 

  • Jaaska V (1981) Aspartate aminotransferase and alcohol dehydrogenase isoenzyme: intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group. Plant Syst Evol 137:259–273

    Article  CAS  Google Scholar 

  • Jakob SS, Blattner FR (2006) A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Mol Biol Evol 23:1602–1612

    Article  CAS  PubMed  Google Scholar 

  • Jakob SS, Blattner FR (2010) Two extinct diploid progenitors where involved in allopolyploid formation in the Hordeum murinum (Poaceae: Triticeae) taxon complex. Mol Phylogenet Evol 55:650–659

    Google Scholar 

  • Jakob SS, Martinez-Meyer E, Blattner FR (2009) Phylogeographic analyses and paleodistribution modeling indicates Pleistocene in situ survival of Hordeum species (Poaceae) in southern Patagonia without genetic or spatial restriction. Mol Biol Evol 26:907–923

    Article  CAS  PubMed  Google Scholar 

  • Jakob SS, Heibl C, Rödder D, Blattner FR (2010) Population demography influences climatic niche evolution: evidence from diploid South American Hordeum species (Poaceae). Mol Ecol 19:1423–1438

    Google Scholar 

  • Karp A, Isaac PG, Ingram DS (1998) Molecular tools for screening biodiversity. Chapman and Hall, London

    Google Scholar 

  • Kihara H (1954) Considerations on the evolution and distribution of Aegilops species based on the analyzer-method. Cytologia 19:336–357

    Google Scholar 

  • Kihara H (1957) Completion of genome-analysis of three 6x species of Aegilops. Wheat Inf Serv 6:11

    Google Scholar 

  • Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Özkan H (2011) Aegilops L. In: Kole C (ed) Wealth of wild crop relatives: genetic, genomic and breeding resources. Springer, New York (in press)

  • Kimber G, Zhao YH (1983) The D genome of the Triticeae. Can J Genet Cytol 25:581–589

    Google Scholar 

  • Knaggs P, Ambrose MJ, Reader SM, Miller TE (2000) Morphological characterisation and evaluation of the subdivision of Aegilops tauschii Coss. Wheat Inf Serv 91:15–19

    Google Scholar 

  • Lelley T, Stachel M, Grausgruber H, Vollmann J (2000) Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661–668

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Chen Z, Pan J, Li X, Su M, Wang L, Li H, Liu G (2008) Phylogenetic relationships in Leymus (Poaceae: Triticeae) revealed by the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. Mol Phylogenet Evol 46:278–289

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka Y, Mori N, Kawahara T (2005) Genealogical use of chloroplast DNA variation for intraspecific studies of Aegilops tauschii Coss. Theor Appl Genet 111:265–271

    Article  CAS  PubMed  Google Scholar 

  • Meimberg H, Rice KJ, Milan NF, Njoku CC, McKay JK (2009) Multiple origins promote the ecological amplitude of allopolyploid Aegilops (Poaceae). Am J Bot 96:1262–1273

    Article  Google Scholar 

  • Naghavi MR, Mardi M, Pirseyedi SM, Tabatabaei SF (2008) Evaluation of genetic diversity in the subspecies of Aegilops tauschii using microsatellite markers. Cereal Res Comm 36:21–31

    Article  CAS  Google Scholar 

  • Naghavi MR, Aghaei MJ, Taleei AR, Omidi M, Mozafari J, Hassani ME (2009) Genetic diversity of the D-genome in T. aestivum and Aegilops species using SSR markers. Genet Res Crop Evol 56:499–506

    Article  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  PubMed  Google Scholar 

  • Nesbitt M, Samuel D (1996) From staple crop to extinction? The archaeology and history of the hulled wheats. In: Padulosi S, Hammer K, Heller J (eds) Proceedings of the First International Workshop on Hulled Wheats. IPGRI, Rome, pp 41–100

    Google Scholar 

  • Park SDE (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. PhD Thesis, Trinity College, University of Dublin, Dublin

  • Pestsova E, Ganal MW, Röder MS (2000a) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  CAS  PubMed  Google Scholar 

  • Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Röder MS (2000b) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106

    Article  CAS  Google Scholar 

  • Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39:70–82

    Article  CAS  PubMed  Google Scholar 

  • Pleines T, Jakob SS, Blattner FR (2009) Application of non-coding DNA regions in intraspecific analyses. Plant Syst Evol 282:281–294

    Article  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Rambaut A (1996) Se-Al: sequence alignment editor.http://tree.bio.ed.ac.uk/software/seal/

  • Rayburn AL, Gill BS (1987) Molecular analysis of the D-genome of the Triticeae. Theor Appl Genet 73:385–388

    Article  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rohlf FJ (2002) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.11a. Applied Biostatistics, New York

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Saeidi H, Rahiminejad MR, Vallian S, Heslop-Harrison JS (2006) Biodiversity of diploid D-genome Aegilops tauschii Coss. in Iran measured using microsatellites. Genet Res Crop Evol 53:1477–1484

    Article  Google Scholar 

  • Saeidi H, Rahiminejad MR, Heslop-Harrison JS (2008a) Retroelement insertional polymorphisms, diversity and phylogeography within diploid D-genome Aegilops tauschii (Triticeae, Poaceae) sub-taxa in Iran. Ann Bot 101:855–861

    Article  CAS  PubMed  Google Scholar 

  • Saeidi H, Sayed Tabatabaei BE, Rahimmalek M, Talebi-Badaf M, Rahiminejad MR (2008b) Genetic diversity and gene-pool subdivisions of diploid D-genome Aegilops tauschii Coss. (Poaceae) in Iran as revealed by AFLP. Genet Res Crop Evol 55:1231–1238

    Article  CAS  Google Scholar 

  • Small RL, Cronn RC, Wendel JF (2004) Use of nuclear genes for phylogeny reconstruction in plants. Austral Syst Bot 17:145–170

    Article  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4.0b10. Sinauer, Sunderland

    Google Scholar 

  • Takumi S, Nishioka E, Kawahara T, Matsuoka Y (2009) Natural variation of morphological traits in wild wheat progenitor Aegilops tauschii Coss. Breed Sci 59:579–588

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricult. Univ., Wageningen

    Google Scholar 

  • Wang JB, Wang C, Shi SH, Zhong Y (2000) Evolution of parental ITS regions of nuclear rDNA in allopolyploid Aegilops (Poaceae) species. Hereditas 133:1–7

    Article  CAS  PubMed  Google Scholar 

  • Yamane K, Kawahara T (2005) Intra- and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on basepair substitutions, indels, and microsatellites in chloroplast noncoding sequences. Am J Bot 92:1887–1898

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank S. Reader (John Innes Center, Norwich, UK), the gene bank of the IPK, and the herbarium of the University of Isfahan for providing plant materials. Thanks to P. Oswald for assistance with laboratory work, C. Koch for greenhouse sample management, K. Zeynali Nejad for technical help with SSR markers, and M. Gurushidze, E. Achigan-Dako, and S. Jakob for help in data analysis. We acknowledge helpful remarks on the manuscript by N. Haider. The authors wish to thank the Office of Graduate Studies of the University of Isfahan for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank R. Blattner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 92.3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordbar, F., Rahiminejad, M.R., Saeidi, H. et al. Phylogeny and genetic diversity of D-genome species of Aegilops and Triticum (Triticeae, Poaceae) from Iran based on microsatellites, ITS, and trnL-F. Plant Syst Evol 291, 117–131 (2011). https://doi.org/10.1007/s00606-010-0375-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0375-1

Keywords

Navigation