Skip to main content
Log in

Mutational dynamics and phylogenetic utility of noncoding chloroplast DNA

Plant Systematics and Evolution Aims and scope Submit manuscript

An Erratum to this article was published on 10 November 2009

Abstract

Introns and spacers are a rich and well-appreciated information source for evolutionary studies in plants. Compared to coding sequences, the mutational dynamics of introns and spacers is very different, involving frequent microstructural changes in addition to substitutions of individual nucleotides. An understanding of the biology of sequence change is required for correct application of molecular characters in phylogenetic analyses, including homology assessment, alignment coding, and tree inference. The widely used term “indel” is very general, and different kinds of microstructural mutations, such as simple sequence repeats, short tandem repeats, homonucleotide repeats, inversions, inverted repeats, and deletions, need to be distinguished. Noncoding DNA has been indispensable for analyses at the species level because coding sequences usually do not offer sufficient variability. A variety of introns and spacers has been successfully applied for phylogeny inference at deeper levels (major lineages of angiosperms and land plants) in past years, and phylogenetic structure R in intron and spacer data sets usually outperforms that of coding-sequence data sets. In order to fully utilize their potential, the molecular evolution and applicability of the most important noncoding markers (the trnT–trnF region comprising two spacers and a group I intron; the trnS–G region comprising one spacer and a group II intron in trnG; the group II introns in petD, rpl16, rps16, and trnK; and the atpB–rbcL and psbA–trnG spacers) are reviewed. The study argues for the use of noncoding DNA in a spectrum of applications from deep-level phylogenetics to speciation studies and barcoding, and aims at outlining molecular evolutionary principles needed for effective analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Aagesen L (2004) The information content of an ambiguously alignable region, a case study of the trnL intron from the Rhamnaceae. Org Divers Evol 4:35–49

    Article  Google Scholar 

  • Akins RA, Lambowitz AM (1987) A protein required for splicing group I introns in Neurospora mitochondria is mitochondrial tyrosyl-tRNA synthetase or a derivative thereof. Cell 50:331–345

    Article  CAS  PubMed  Google Scholar 

  • Aldrich J, Crnheey BW, Merlin E, Christopherson L (1988) The role of insertions/deletions in the evolution of the intergenic region between psbA and trnH in the chloroplast genome. Curr Genet 14:137–146

    Article  CAS  PubMed  Google Scholar 

  • Andersson L, Rova JHE (1999) The rpsl6 intron and the phylogeny of the Rubioideae (Rubiaceae). Plant Syst Evol 214:161–186

    Article  Google Scholar 

  • Ansell SW, Schneider H, Pedersen N, Grundmann M, Russell SJ, Vogel JC (2007) Recombination diversifies chloroplast trnF pseudogenes in Arabidopsis lyrata. J Evol Biol 20:2400–2411

    Article  CAS  PubMed  Google Scholar 

  • Asmussen CB, Chase MW (2001) Coding and noncoding plastid DNA in palm systematics. Am J Bot 88:1103–1117

    Article  CAS  PubMed  Google Scholar 

  • Azuma H, Thien LB, Kawano S (1999) Molecular phylogeny of Magnolia (Magnoliaceae) inferred from cpDNA sequences and evolutionary divergences of the floral scents. J Plant Res 112:291–306

    Article  CAS  Google Scholar 

  • Backert S, Lynn Nielsen B, Börner T (1997) The mystery of the rings: structure and replication of mitochondrial genomes from higher plants. Trends Plant Sci 2:477–483

    Article  Google Scholar 

  • Baker WJ, Hedderson TA, Dransfield J (2000) Molecular phylogenetics of subfamily Calamoideae (Palmae) based on nrDNA ITS and cpDNA rps16 intron sequence data. Mol Phylogenet Evol 14:195–217

    Article  CAS  PubMed  Google Scholar 

  • Bakker FT, Culham A, Gomez-Martinez R, Carvalho J, Compton J, Dawtrea R, Gibby M (2000) Patterns of nucleotide substitution in angiosperm cpDNA trnL(UAA)-trnF(GAA) regions. Mol Biol Evol 17:1146–1155

    CAS  PubMed  Google Scholar 

  • Barfuss MHJ, Samuel R, Till W, Stuessy TF (2005) Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions. Am J Bot 92:337–351

    Article  CAS  Google Scholar 

  • Baumgartner BJ, Rapp JC, Mullet JE (1989) Plastid transcription activity and DNA copy number increase early in barley chloroplast development. Plant Physiol 89:1011–1018

    Article  CAS  PubMed  Google Scholar 

  • Beck SG, Fleischmann A, Huaylla H, Müller KF, Borsch T (2008) Pinguicula chuquisacensis (Lentibulariaceae), a new species from the Bolivian Andes, and first insights on phylogenetic relationships among South American Pinguicula. Willdenowia 38:201–212

    Article  Google Scholar 

  • Benderoth M, Textor S, Windsor AJ, Mitchell-Olds T, Gereshenzon J, Kroymann J (2006) Positive selection during diversification in plant secondary metabolism. Proc Natl Acad Sci USA 103:9118–9123

    Article  CAS  PubMed  Google Scholar 

  • Benson G (1997) Sequence alignment with tandem duplication. J Comput Biol 4:351–367

    Article  CAS  PubMed  Google Scholar 

  • Besendahl A, Qiu YL, Lee J, Palmer JD, Bhattacharya D (2000) The cyanobacterial origin and vertical transmission of the plastid tRNALeu group-I-intron. Curr Genet 37:12–23

    Article  CAS  PubMed  Google Scholar 

  • Biffin E, Harrington MG, Crisp MD, Craven LA, Gadek PA (2007) Structural partitioning, paired-sites models and evolution of the ITS transcript in Syzygium and Myrtaceae. Mol Phylogenet Evol 43:124–139

    Article  CAS  PubMed  Google Scholar 

  • Birky CW Jr (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 92:11331–11338

    Article  CAS  PubMed  Google Scholar 

  • Björklund M (1999) Are third positions really bad? A test using vertebrate cytochrome b. Cladistics 15:191–197

    Google Scholar 

  • Böhle UR, Hilger HH, Martin FW (1996) Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae). Proc Natl Acad Sci USA 93:11740–11745

    Article  PubMed  Google Scholar 

  • Boivin R, Richard M, Beauseigle D, Bousquet J, Bellemare G (1996) Phylogenetic inferences from chloroplast chlB gene sequences of Nephrolepis exaltata (Filicopsida), Ephedra altissima (Gnetopsida), and diverse land plants. Mol Phylogenet Evol 6:19–29

    Article  CAS  PubMed  Google Scholar 

  • Borsch T, Hilu KW, Quandt D, Wilde V, Neinhuis C, Barthlott W (2003) Non-coding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms. J Evol Biol 16:558–576

    Article  CAS  PubMed  Google Scholar 

  • Borsch T, Löhne C, Müller K, Hilu KW, Wanke S, Worberg A, Barthlott W, Neinhuis C, Quandt D (2005) Towards understanding basal angiosperm diversification: recent insights using rapidly evolving genomic regions. Nova Acta Leopoldina NF 92(342):85–110

    CAS  Google Scholar 

  • Borsch T, Hilu KW, Wiersema JH, Löhne C, Barthlott W, Wilde V (2007) Phylogeny of Nymphaea (Nymphaeaceae): evidence from substitutions and microstructural changes of the chloroplast trnT-trnF region. Int J Plant Sci 168:639–671

    Article  CAS  Google Scholar 

  • Borsch T, Korotkova N, Raus T, Lobin W, Löhne C (2009) The petD group II intron as a species level marker: utility for tree inference and species identification in the diverse genus Campanula (Campanulaceae). Willdenowia 39:7–33

    Article  Google Scholar 

  • Calonje M, Martín-Bravo S, Dobeš, Gong W, Jordon-Thaden I, Kiefer C, Kiefer M, Paule J, Schmickl R, Koch MA (2009) Non-coding nuclear DNA markers in phylogenetic reconstruction. Plant Syst Evol (this volume, pp 257–280). doi:10.1007/s00606-008-0031-1

  • Calviño CI, Downie SR (2007) Circumscription and phylogeny of Apiaceae subfamily Saniculoideae based on chloroplast DNA sequences. Mol Phylogenet Evol 44:175–191

    Article  PubMed  CAS  Google Scholar 

  • Campagna ML, Downie SR (1998) The intron in chloroplast gene rpl16 is missing from the flowering plant families Geraniaceae, Goodeniaceae, and Plumbaginaceae. Trans Illinois State Acad Sci 91:1–11

    CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    CAS  PubMed  Google Scholar 

  • Cech TR (1988) Conserved sequences and structures of group I introns: building an active site for RNA catalysis—a review. Gene 73:259–271

    Article  CAS  PubMed  Google Scholar 

  • Cech TR (1990) Self-splicing of group I introns. Annu Rev Biochem 59:543–568

    Article  CAS  PubMed  Google Scholar 

  • Cech TR, Herschlag D, Piccirilli JA, Pyle AM (1992) RNA catalysis by a group I ribozyme: developing a model for transition state stabilization. J Biol Chem 267:1749–17482

    Google Scholar 

  • Cech TR, Damberger SH, Gutell RR (1994) Representation of the secondary and tertiary structure of group I introns. Struct Biol 1:273–280

    Article  CAS  Google Scholar 

  • Chang C-C, Lin H-C, Lin I-P, Chow T-Y, Chen H-H, Chen W-H, Cheng C-H, Lin C-Y, Liu S-M, Chang C-C, Chaw S-M (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23:279–291

    Article  CAS  PubMed  Google Scholar 

  • Chaw SM, Walters TW, Chang CC, Hu SH, Chen SH (2005) A phylogeny of cycads (Cycadales) inferred from chloroplast matK gene, trnK intron, and nuclear rDNA ITS region. Mol Phylogenet Evol 37:214–234

    Article  CAS  PubMed  Google Scholar 

  • Chiang T-Y, Schaal BA (2000) Molecular evolution and phylogeny of the atpB-rbcL spacer of chloroplast DNA in the true mosses. Genome 43:417–426

    Article  CAS  PubMed  Google Scholar 

  • Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190

    Article  CAS  PubMed  Google Scholar 

  • Clegg MT, Gaut BS, Learn GH, Morton BR (1994) Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci USA 91:6795–6801

    Article  CAS  PubMed  Google Scholar 

  • Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75:1443–1458

    Article  Google Scholar 

  • Cosner ME, Jansen RK, Palmer JD, Downie SR (1997) The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr Genet 31:419–429

    Article  CAS  PubMed  Google Scholar 

  • Cozzolino S, Cafasso D, Pellegrino G, Musacchio A, Widmer A (2003) Molecular evolution of a plastid tandem repeat locus in an orchid lineage. J Mol Evol 57:S41–S49

    Article  CAS  PubMed  Google Scholar 

  • Crayn DM, Quinn CJ (2000) The evolution of the atpB-rbcL intergenic spacer in the Epacrids (Ericales) and its systematic and evolutionary implications. Mol Phylogenet Evol 16:238–252

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Wurdack KJ, Kanagaraj A, Lee S-B, Saski C, Jansen RK (2008) The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron. Theor Appl Genet 116:723–737

    Article  CAS  PubMed  Google Scholar 

  • Davies RW, Waring RB, Brown TA, Scazzocchio C (1982) Making ends meet—a model for RNA splicing in fungal mitochondria. Nature 300:719–724

    Article  CAS  PubMed  Google Scholar 

  • Day A, Madesis P (2007) DNA replication, recombination, and repair in plastids. In: Bock R (ed) Cell and molecular biology of plastids. Topics in current genetics, vol 19. Springer, Heidelberg, pp 65–119

  • Delwiche CF, Palmer JD (1997) The origin of plastids and their spread via secondary symbiosis. Plant Syst Evol 11:53–86

    CAS  Google Scholar 

  • Donoghue MJ, Baldwin BG, Li J, Winkworth RC (2004) Viburnum phylogeny based on chloroplast trnK intron and nuclear ribosomal ITS DNA sequences. Syst Bot 29:188–198

    Article  Google Scholar 

  • Downie SR, Katz-Downie DS (1999) Phylogenetic analysis of chloroplast rps16 intron sequences reveals relationships within the woody southern African Apiaceae subfamily Apioideae. Can J Bot 77:1120–1135

    Article  CAS  Google Scholar 

  • Downie SR, Katz-Downie D, Watson MF (2000) A phylogeny of the flowering plant family Apiaceae based on chloroplast DNA rpl16 and rpoC1 intron sequences: towards a suprageneric classification of subfamily Apioideae. Am J Bot 87:273–292

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL, Palmer JD (1995) Multiple independent losses of two genes and one intron from legume chloroplast genomes. Syst Bot 20:272–294

    Article  Google Scholar 

  • Duffy AM, Kelchner SA, Wolf PG (2009) Conservation of selection on matK following an ancient loss of its flanking intron. Gene 438:17–25

    Article  CAS  PubMed  Google Scholar 

  • Echt CS, Deverno LL, Anzidei M, Vendramin GG (1998) Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait. Mol Ecol 7:307–316

    Article  Google Scholar 

  • Edwards D, Horn A, Taylor D, Savolainen V, Hawkins JA (2008) DNA barcoding of a large genus, Aspalanthus L. (Fabaceae). Taxon 57:1317–1327

    Google Scholar 

  • Ehrendorfer F, Manen J-F, Natali A (1994) cpDNA intergene sequences corroborate restriction site data for reconstructing Rubiaceae phylogeny. Plant Syst Evol 190:245–248

    Article  CAS  Google Scholar 

  • Funk HT, Berg S, Krupinska K, Maier UG, Krause K (2007) Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii. BMC Plant Biol 7:45

    Article  PubMed  CAS  Google Scholar 

  • Galley C, Linder HP (2007) The phylogeny of the Pentaschistis clade (Danthonioideae, Poaceae) based on chloroplast DNA, and the evolution and loss of complex characters. Evolution 61:864–884

    Article  CAS  PubMed  Google Scholar 

  • Gielly L, Taberlet P (1996) A phylogeny of European gentians inferred from chloroplast trnL (UAA) intron sequences. Bot J Linn Soc 120:57–75

    Google Scholar 

  • Golenberg EM, Clegg MT, Durbin ML, Doebley J, Ma DP (1993) Evolution of a noncoding region of the chloroplast genome. Mol Phylogenet Evol 2:52–64

    Article  CAS  PubMed  Google Scholar 

  • Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2004) The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. Mol Biol Evol 21:1445–1454

    Article  CAS  PubMed  Google Scholar 

  • Graham SW, Olmstead RG (2000) Evolutionary significance of an unusual chloroplast DNA inversion found in two basal angiosperm lineages. Curr Genet 37:183–188

    Article  CAS  PubMed  Google Scholar 

  • Graham SW, Reeves PA, Burns ACE, Olmstead RG (2000) Microstructural changes in noncoding chloroplast DNA: interpretation, evolution, and utility of indels and inversions in basal angiosperm phylogenetic inference. Int J Plant Sci 161:S83–S96

    Article  CAS  Google Scholar 

  • Grewe F, Viehoever P, Weisshaar B, Knoop V (2009) A trans-splicing group I intron and the tRNA-hyperediting in the mitochondrial genome of the lycophyte Isostes engelmannii. Nucl Acids Res. doi:10.1093/nar/gkp532

  • Groeninckx I, Dessein S, Ochoterena H, Persson C, Motley TJ, Kårehed J, Bremer B, Huysmans S, Smets S (2009) Phylogeny of the herbaceous tribe Spermacoceae (Rubiaceae) based on plastid DNA data. Ann Missouri Bot Gard 96:109–132

    Google Scholar 

  • Grundy WN, Naylor GJ (1999) Phylogenetic inference from conserved sites alignments. J Exp Zoo 285:128–139

    Article  CAS  Google Scholar 

  • Gu X, Li WH (1995) The size distribution of insertions and deletions in human and rodent pseudogenes suggests the logarithmic gap penalty for sequence alignment. J Mol Evol 40:464–473

    Article  CAS  PubMed  Google Scholar 

  • Haberle RC, Fourcade HM, Boore JL, Jansen RK (2008) Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats in tRNA genes. J Mol Evol 66:350–361

    Article  CAS  PubMed  Google Scholar 

  • Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 8:521–523

    CAS  PubMed  Google Scholar 

  • Hamilton MB, Braverman JM, Soria-Hernanz DF (2003) Patterns and relative rates of nucleotide and insertion/deletion evolution at six chloroplast intergenic regions in new world species of the Lecythidaceae. Mol Biol Evol 20:1710–1721

    Article  CAS  PubMed  Google Scholar 

  • Hansen DR, Dastidar SG, Cai Z, Penaflor C, Kuehl JV, Boore JL, Jansen RK (2007) Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Mol Phylogenet Evol 45:547–563

    Article  CAS  PubMed  Google Scholar 

  • Haugen P, Simon DM, Bhattacharya D (2005) The natural history of group I introns. Trends Genet 21:111–119

    Article  CAS  PubMed  Google Scholar 

  • Hausner G, Olson R, Simon D, Johnson I, Sanders ER, Karol KG, McCourt RM, Zimmerly S (2006) Origin and evolution of the chloroplast trnK (matK) intron: a model for evolution of group II intron RNA structures. Mol Biol Evol 23:380–391

    Article  CAS  PubMed  Google Scholar 

  • Hedderson TA, Zander RH (2007) Triquetrella mxinwana, a new moss species from South Africa, with a phylogenetic and biogeographic hypothesis for the genus. J Bryol 29:151–160

    Article  Google Scholar 

  • Hedenäs L (2009) Relationships among arctic and non-arctic haplotypes of the moss species Scorpidium cossonii and Scorpidium scorpioides (Calliergonaceae). Plant Syst Evol. doi:10.1007/s00606-008-0131-y

  • Heinhorst S, Cannon GC (1993) DNA replication in chloroplasts. J Cell Sci 104:1–9

    CAS  Google Scholar 

  • Hernández-Maqueda R, Quandt D, Werner O, Muñoz J (2008) Phylogenetic relationships and generic classification of the Grimmiaceae. Mol Phylogenet Evol 46:863–877

    PubMed  Google Scholar 

  • Hillis DM (1994) Homology in molecular biology. In: Hall B (ed) Homology—the hierarchical basis of comparative biology. Academic Press, San Diego, pp 339–369

    Google Scholar 

  • Hilu KW, Liang H (1997) The matK gene: sequence variation and application in plant systematics. Am J Bot 84:830–839

    Article  CAS  Google Scholar 

  • Hilu KW, Borsch T, Müller K, Soltis DE, Soltis PS, Savolainen V, Chase MW, Powell M, Alice MA, Evans R, Sauquet H, Neinhuis C, Slotta TA, Rohwer JG, Campbell CS, Chatrou L (2003) Angiosperm phylogeny based on matK sequence information. Am J Bot 90:1758–1776

    Article  CAS  Google Scholar 

  • Hirao T, Watanabe A, Kurita M, Kondo T, Takata K (2008) Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. BMC Plant Biol 8:70

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185–194

    Article  CAS  PubMed  Google Scholar 

  • Hoot SB, Douglas AW (1998) Phylogeny of the Proteaceae based on atpB and atpB-rbcL intergenic spacer region sequences. Aust Syst Bot 11:301–320

    Article  Google Scholar 

  • Hoot SB, Taylor WC, Napier NS (2006) Phylogeny and biogeography of Isoёtes (Isoёtaceae) based on nuclear and chloroplast DNA sequence data. Syst Bot 31:449–460

    Google Scholar 

  • Hupfer H, Swiatek M, Hornung S, Herrmann RG, Maier RM, Chiu WL, Sears B (2000) Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome I of the five distinguishable Euoenothera plastomes. Mol Gen Genet 263:581–585

    CAS  PubMed  Google Scholar 

  • Huttunen S, Hedenäs L, Ignatov MS, Devos N, Vanderpoorten A (2008) Origin and evolution of the northern hemisphere disjunction in the moss genus Homalothecium (Brachytheciaceae). Am J Bot 95:720–730

    Article  CAS  Google Scholar 

  • Jansen RK, Raubeson LA, Boore JL, DePamphilis CW, Chumley TW, Haberle RC, Wyman SK, Alverson AJ, Peery R, Herman SJ, Fourcade HM, Kuehl JV, McNeal JR, Leebens-Mack J, Cui L (2005) Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol 395:348–384

    Article  CAS  PubMed  Google Scholar 

  • Jansen RK, Cai Z, Raubeson LA, Daniell H, DePamphilis CW, Lebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374

    Article  CAS  PubMed  Google Scholar 

  • Jansen RK, Wojciechowski MF, Sanniyasic E, Leec SB, Daniell H (2008) Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Mol Phylogenet Evol 48:1204–1217

    Article  CAS  PubMed  Google Scholar 

  • Jenkins B, Kulhanek D, Barkan A (1997) Nuclear mutations that block group II RNA splicing in maize chloroplasts reveal several intron classes with distinct requirements for splicing factors. Plant Cell 9:283–296

    Article  CAS  PubMed  Google Scholar 

  • Johansson JT (1999) There large inversions in the chloroplast genomes and one loss of the chloroplast gene rps16 suggest an early evolutionary split in the genus Adonis (Ranunculaceae). Plant Syst Evol 218:133–143

    Article  CAS  Google Scholar 

  • Johnson LA, Soltis DE (1995) Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann Missouri Bot Gard 82:149–175

    Article  Google Scholar 

  • Jordan WC, Courtney MW, Neigel JE (1996) Low levels of intraspecific genetic variation at a rapidly evolving chloroplast DNA locus in North American duckweeds (Lemnaceae). Am J Bot 83:430–439

    Article  CAS  Google Scholar 

  • Jukes TH, King JL (1971) Deleterious mutations and neutral substitutions. Nature 231:114–115

    Article  CAS  PubMed  Google Scholar 

  • Kadereit G, Mucina L, Freitag H (2006) Phylogeny of Salicornioideae (Chenopodiaceae): diversification, biogeography, and evolutionary trends in leaf and flower morphology. Taxon 55:617–642

    Article  Google Scholar 

  • Kallersjö M, Farris JS, Kluge AG, Bull C (1992) Skewness and permutation. Cladistics 8:275–287

    Article  Google Scholar 

  • Kallersjö M, Albert V, Farris JS (1999) Homoplasy increases phylogenetic structure. Cladistics 15:91–93

    Google Scholar 

  • Kanno A, Hirai A (1993) A transcription map of the chloroplast genome from rice (Oryza sativa). Curr Genet 23:166–174

    Article  CAS  PubMed  Google Scholar 

  • Kårehed J, Groeninckx I, Dessein S, Motley TJ, Bremer B (2008) The phylogenetic utility of chloroplast and nuclear DNA markers and the phylogeny of Rubiaceae tribe Spermacoceae. Mol Phylogenet Evol 49:843–866

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Kaneko T, Sato S, Nakamura Y, Tabata S (2000) Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Res 7:323–330

    Article  CAS  PubMed  Google Scholar 

  • Kelchner SA (2000) The evolution of noncoding chloroplast DNA and its application in plant systematics. Ann Missouri Bot Gard 87:482–498

    Article  Google Scholar 

  • Kelchner SA (2002) Group II introns as phylogenetic tools: structure, function, and evolutionary constraints. Am J Bot 89:1651–1669

    Article  CAS  Google Scholar 

  • Kelchner SA, Clark LG (1997) Molecular evolution and phylogenetic utility of the chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Mol Phylogenet Evol 8:385–397

    Article  CAS  PubMed  Google Scholar 

  • Kelchner SA, Thomas MA (2007) Model use in phylogenetics: nine key questions. Trends Ecol Evol 22:87–94

    Article  PubMed  Google Scholar 

  • Kelchner SA, Wendel JF (1996) Hairpins create minute inversions in noncoding regions of chloroplast DNA. Curr Genet 30:259–262

    Article  CAS  PubMed  Google Scholar 

  • Kellermann J, Udovicic F (2008) Large indels obscure phylogeny in analysis of chloroplast DNA trnL-F sequence data: Pomaderreae (Rhamnaceae) revisited. Telopea 12:1–22

    Google Scholar 

  • Kim K-J, Lee HL (2005) Widespread occurrence of small inversions in the chloroplast genomes of land plants. Mol Cells 19:104–113

    CAS  PubMed  Google Scholar 

  • Kim S-C, Crawford DJ, Jansen RK, Santos-Guerra A (1999) The use of a noncoding region of chloroplast DNA in phylogenetic studies of the subtribe Sonchinae (Asteraceae: Lactuceae). Plant Syst Evol 215:85–99

    Article  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kjer KM, Roshan U, Gillespie JJ (2009) Structural and evolutionary considerations for multiple sequence alignment of RNA, and the challenges for algorithms that ignore them. In: Rosenberg MS (ed) Sequence alignment: methods, models, concepts, and strategies. University of California Press, Berkeley, pp 105–149

    Google Scholar 

  • Knoop V (2004) The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet 46:123–139

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Dobeš C, Matschinger M, Bleeker W, Vogel J, Kiefer M, Mitchell-Olds T (2005) Evolution of the plastidic trnF(GAA) gene in Arabidopsis relatives and the Brassicaceae family: monophyletic origin and subsequent diversification of a plastidic pseudogene. Mol Biol Evol 22:1032–1043

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Dobeš C, Kiefer M, Schmickl R, Klimes L, Lysak MA (2007) Supernetwork identifies multiple events of plastidic trnF(GAA) pseudogene evolution in the Brassicaceae. Mol Biol Evol 24:63–73

    Article  CAS  PubMed  Google Scholar 

  • Kocyan A, Zhang L-B, Schaefer H, Renner SS (2007) A multi-locus chloroplast phylogeny for the Cucurbitaceae and its implications for character evolution and classification. Mol Phylogenet Evol 44:553–577

    Article  CAS  PubMed  Google Scholar 

  • Koller B, Delius H (1980) Vicia faba chloroplast DNA has only one set of ribosomal RNA genes as shown by partial denaturation mapping and R-loop analysis. Mol Gen Genet 178:261–269

    Article  CAS  Google Scholar 

  • Korotkova N, Schneider JV, Quandt D, Worberg A, Zizka G, Borsch T (2009) Phylogeny of the eudicot order Malpighiales—analysis of a recalcitrant clade with sequences of the petD group II intron. Plant Syst Evol (this volume, pp 201–228). doi:10.1007/s00606-008-0099-7

  • Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102:8369–8374

    Article  CAS  PubMed  Google Scholar 

  • Kugita M, Kaneko A, Yamamoto Y, Takeya Y, Matsumoto T, Yoshinaga K (2003) The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants. Nucl Acids Res 31:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kuhsel MG, Strickland R, Palmer JD (1990) An ancient group I intron shared by eubacteria and chloroplasts. Science 250:1570–1573

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa T (1991) The replication, differentiation, and inheritance of plastids with emphasis on the concept of organelle nuclei. Int Rev Cytol 128:1–62

    Article  CAS  Google Scholar 

  • Lee J, Hymowitz T (2001) A molecular phylogenetic study of the subtribe Glycininae (Leguminosae) derived from the chloroplast DNA rps16 intron sequences. Am J Bot 88:2064–2073

    Article  CAS  Google Scholar 

  • Lee H-J, Jansen RK, Chumley TW, Kim K-J (2007) Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol 24:1161–1180

    Article  CAS  PubMed  Google Scholar 

  • Leebens-Mack J, Raubeson LA, Cui L, Kuehl JV, Fourcade MH, Chumley TM, Boore JL, Jansen RK, dePamphilis CW (2005) Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein Zone. Mol Biol Evol 22:1948–1963

    Article  CAS  PubMed  Google Scholar 

  • Lehmann K, Schmidt U (2003) Group II introns: structure and catalytic versatility of large natural ribozymes. Crit Rev Biochem Mol 38:249–303

    Article  CAS  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    CAS  PubMed  Google Scholar 

  • Lidholm J, Gustafsson P (1991) A three-step model for the rearrangement of the chloroplast trnK-psbA region of the gymnosperm Pinus contorta. Nucl Acids Res 19:2881–2887

    Article  CAS  PubMed  Google Scholar 

  • Lidholm J, Szmidt A, Gustafsson P (1991) Duplication of the psbA gene in the chloroplast genome of two Pinus species. Mol Gen Genet 226:345–352

    Article  CAS  PubMed  Google Scholar 

  • Lilly JW, Havey MJ, Jackson SA, Jiang JM (2001) Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13:245–254

    Article  CAS  PubMed  Google Scholar 

  • Löhne C, Borsch T (2005) Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms. Mol Biol Evol 22:317–332

    Article  PubMed  CAS  Google Scholar 

  • Löhne C, Borsch T, Wiersema JH (2007) Phylogenetic analysis of Nymphaeales using fast-evolving and noncoding chloroplast markers. Bot J Linn Soc 154:141–163

    Article  Google Scholar 

  • Long DG, Möller M, Preston J (2000) Phylogenetic relationships of Asterella (Aytoniaceae, Marchantiopsida) inferred from chloroplast DNA sequences. Bryologist 103:625–644

    Article  CAS  Google Scholar 

  • Lugo SK, Kunnimalaiyaan M, Singh NK, Niesen BL (2004) Required sequence elements for chloroplast DNA replication activity in vitro and in electroporated chloroplasts. Plant Sci 166:151–161

    Article  CAS  Google Scholar 

  • Malek O, Knoop V (1998) Trans-splicing group II introns in plant mitochondria: the complete set of cis-arranged homologs in ferns, fern allies, and a hornwort. RNA 4:1599–1609

    Article  CAS  PubMed  Google Scholar 

  • Manen JF (2000) Relaxation of evolutionary constraints in promoters of the plastid gene atpB in a particular Rubiaceae lineage. Plant Syst Evol 224:235–241

    Article  CAS  Google Scholar 

  • Manen JF, Natali A (1995) Comparison of the evolution of ribulose-1,5-biphosphate carboxylase (rbcL) and atpB-rbcL noncoding spacer sequences in a recent plant group, the tribe Rubieae (Rubiaceae). J Mol Evol 41:920–927

    Article  CAS  PubMed  Google Scholar 

  • Manen JF, Natali A, Ehrendorfer F (1994a) Phylogeny of Rubiaceae-Rubieae inferred from the sequence of a cpDNA intergene region. Plant Syst Evol 190:195–211

    Article  CAS  Google Scholar 

  • Manen J-F, Savolainen V, Simon P (1994b) The atpB and rbcL promoters in plastid DNAs of a wide dicot range. J Mol Evol 38:577–582

    Article  CAS  PubMed  Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hapsmann S, Hasegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165

    Article  CAS  PubMed  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    Article  CAS  PubMed  Google Scholar 

  • McCauley DE (1994) Contrasting the distribution of chloroplast DNA and allozyme polymorphism among local populations of Silene alba—implications for studies of gene flow in plants. Proc Natl Acad Sci USA 91:8127–8131

    Article  CAS  PubMed  Google Scholar 

  • McCoy SR, Kuehl JV, Boore JL, Raubeson LA (2008) The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates. BMC Evol Biol 8:130

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:R514–R516

    Article  CAS  PubMed  Google Scholar 

  • Meimberg H, Wistuba A, Dittrich P, Heubl G (2001) Molecular phylogeny of Nepenthaceae based on cladistic analysis of plastid trnK intron sequence data. Plant Biol 3:164–175

    Article  CAS  Google Scholar 

  • Meimberg H, Thalhammer S, Brachmann A, Heubl G (2006) Comparative analysis of a translocated copy of the trnK intron in carnivorous family Nepenthaceae. Mol Phylogent Evol 39:478–490

    Article  CAS  Google Scholar 

  • Michel F, Westhof E (1990) Modeling of the 3-dimensional architecture of group-I catalytic introns based on comparative sequence analysis. J Mol Biol 216:585–610

    Article  CAS  PubMed  Google Scholar 

  • Michel F, Umesono K, Ozeki H (1989) Comparative and functional anatomy of group II catalytic introns—a review. Gene 82:5–30

    Article  CAS  PubMed  Google Scholar 

  • Michelangeli FA, Davis JI, Stevenson DW (2003) Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from the mitochondrial and plastid genomes. Am J Bot 90:93–106

    Article  CAS  Google Scholar 

  • Miller JT, Bayer RJ (2003) Molecular phylogenetics of Acacia subgenera Acacia and Aculeiferum (Fabaceae: Mimosoideae), based on the chloroplast matK coding sequence and flanking trnK intron spacer regions. Austral Syst Bot 16:27–33

    Article  CAS  Google Scholar 

  • Miyata Y, Sugita C, Maruyama K, Sugita M (2008) RNA editing in the anticodon of tRNALeu (CAA) occurs before group I intron splicing in plastids of a moss Takakia lepidozioides S. Hatt. & Inoue. Plant Biol 10:250–255

    Article  CAS  PubMed  Google Scholar 

  • Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM, Soltis DE (2006) Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biol 6:17

    Article  PubMed  CAS  Google Scholar 

  • Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104:19363–19368

    Article  PubMed  Google Scholar 

  • Morrison DA (2009a) Why would phylogeneticists ignore computerized sequence alignment? Syst Bot 58:150–158

    Google Scholar 

  • Morrison DA (2009b) A framework for phylogenetic sequence alignment. Plant Syst Evol (this volume, pp 127–149). doi:10.1007/s00606-008-0072-5

  • Mort ME, Archibald JK, Randle CP, Levsen ND, O’Leary TR, Topalov K, Wiegand CM, Crawford DJ (2007) Inferring phylogeny at low taxonomic levels: utility of rapidly evolving cpDNA and nuclear ITS loci. Am J Bot 94:173–183

    Article  Google Scholar 

  • Morton BR, Clegg MT (1993) A chloroplast DNA mutational hotspot and gene conversion in a noncoding region near rbcL in the grass family (Poaceae). Curr Genet 24:357–365

    Article  CAS  PubMed  Google Scholar 

  • Morton BR, Clegg MT (1995) Neighboring base composition is strongly correlated with base substitution bias in a region of the chloroplast genome. J Mol Evol 41:597–603

    Article  CAS  PubMed  Google Scholar 

  • Müller K, Borsch T (2005a) Phylogenetics of Utricularia (Lentibulariaceae) and molecular evolution of the trnK intron in a lineage with high mutational rates. Plant Syst Evol 250:39–67

    Article  CAS  Google Scholar 

  • Müller K, Borsch T (2005b) Phylogenetics of Amaranthaceae based on matK/trnK sequence data: evidence from Parsimony, Likelihood, and Bayesian analyses. Ann Missouri Bot Gard 92:66–102

    Google Scholar 

  • Müller KF, Borsch T, Hilu KW (2006) Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F and rbcL in basal angiosperms. Mol Phylogenet Evol 41:99–117

    Article  PubMed  CAS  Google Scholar 

  • Murdock AG (2008) Phylogeny of marattioid ferns (Marattiaceae): inferring a root in the absence of a closely related outgroup. Am J Bot 95:626–641

    Article  CAS  Google Scholar 

  • Nelissen B, van de Peer Y, Wilmotte A, De Wachter R (1995) An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol 12:1166–1173

    CAS  PubMed  Google Scholar 

  • Nikolaou C, Almirantis Y (2006) Deviations from Chargaff’s second parity rule in organellar DNA—insights into the evolution of organellar genomes. Gene 381:34–41

    Article  CAS  PubMed  Google Scholar 

  • Ochoterena H (2009) Homology in coding and noncoding DNA sequences: a parsimony perspective. Plant Syst Evol (this volume, pp 151–168). doi:10.1007/s00606-008-0095-y

  • Ogden TH, Rosenberg MS (2006) Multiple sequence alignment accuracy and phylogenetic inference. Syst Biol 55:314–328

    Article  Google Scholar 

  • Ogihara Y, Yamazaki Y, Murai K, Kanno A, Terachi T, Shiina T, Miyashita N, Nasuda S, Nakamura C, Mori N, Takumi S, Murata M, Futo S, Tsunewaki K (2005) Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucl Acids Res 33:6235–6250

    Article  CAS  PubMed  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of the liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574

    Article  CAS  Google Scholar 

  • Olsson S, Buchbender V, Huttunen S, Enroth J, Hedenäs L, Quandt D (2009) Evolution of the Neckeraceae (Bryophyta): resolving the backbone phylogeny and identifying ancestral character states. Syst Biodiv 7 (in press)

  • Ostersetzer O, Cooke AM, Watkins KP, Barkan A (2005) CRS1, a chloroplast group II intron splicing factor, promotes intron folding through specific interactions with two intron domains. Plant Cell 17:241–255

    Article  CAS  PubMed  Google Scholar 

  • Oxelman B, Liden M, Berglund D (1997) Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Syst Evol 206:393–410

    Article  Google Scholar 

  • Pacak A, Szweykowsska-Kulinska Z (2000) Molecular data concerning alloploid character and the origin of chloroplast and mitochondrial genomes in the liverwort species Pellia borealis. J Plant Biotechnol 2:101–108

    Google Scholar 

  • Pagel M, Meade A (2004) A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence of character state data. Syst Biol 53:571–581

    Article  PubMed  Google Scholar 

  • Palmer JD (1983) Chloroplast DNA exists in two orientations. Nature 301:92–93

    Article  CAS  Google Scholar 

  • Palmer JD (1985) Comparative organisation of chloroplast genomes. Annu Rev Genet 19:325–354

    Article  CAS  PubMed  Google Scholar 

  • Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Bogorad L, Vasil IK (eds) The molecular biology of plastids. Academic Press, San Diego, pp 5–53

    Google Scholar 

  • Pedersen N, Hedenäs S (2003) Phylogenetic investigations of a well supported clade within the acrocarpous moss family Bryaceae: evidence from seven chloroplast DNA sequences and morphology. Plant Syst Evol 240:115–132

    Article  Google Scholar 

  • Penny D, Hendy MD (1985) The use of tree comparison metrics. Syst Zool 34:75–82

    Article  Google Scholar 

  • Perret M, Chautems A, Spichiger R, Kite G, Savolainen V (2003) Systematics and evolution of tribe Sinningieae (Gesneriaceae): evidence from phylogenetic analyses of six plastid DNA regions and nuclear ncpGS1. Am J Bot 90:445–460

    Article  CAS  Google Scholar 

  • Persson C (2000) Phylogeny of Gardenieae (Rubiaceae) based on chloroplast DNA sequences from the rps16 intron and trnL(UAA)-F(GAA) intergenic spacer. Nord J Bot 20:257–270

    Article  CAS  Google Scholar 

  • Pirie MD, Vargas MPB, Botermans M, Bakker FT, Chatrou LW (2007) Ancient paralogy in the cpDNA trnL-F region in Annonaceae: implications for plant molecular systematics. Am J Bot 94:1003–1016

    Article  Google Scholar 

  • Pombert JF, Lemieux C, Turmel M (2006) The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes. BMC Biol 4:3

    Article  PubMed  CAS  Google Scholar 

  • Provan J, Soranzo N, Wilson NJ, Goldstein DB, Powell W (1999) A low mutation rate for chloroplast microsatellites. Genetics 153:943–947

    CAS  PubMed  Google Scholar 

  • Pyle AM, Lambowitz AM (2006) Group II introns: ribozymes that splice RNA and invade DNA. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 449–505

    Google Scholar 

  • Qin PZ, Pyle AM (1998) The architectural organization and mechanistic function of group II intron structural elements. Curr Opin Struct Biol 8:301–308

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y-L, Palmer JD (2004) Many independent origins of trans splicing of a plant mitochondrial group II intron. J Mol Evol 59:722–724

    Article  CAS  Google Scholar 

  • Qiu Y-L, Lee J, Bernasconi-Quandroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407

    Article  CAS  PubMed  Google Scholar 

  • Quandt D, Stech M (2004) Molecular evolution and phylogenetic utility of the chloroplast trnT-trnF region in bryophytes. Plant Biol 6:545–554

    Article  CAS  PubMed  Google Scholar 

  • Quandt D, Stech M (2005) Molecular evolution of the trnL(UAA) intron in bryophytes. Mol Phylogenet Evol 36:429–443

    Article  CAS  PubMed  Google Scholar 

  • Quandt D, Müller K, Huttunen S (2003) Characterisation of the chloroplast DNA psbT-H region and the influence of dyad symmetrical elements on phylogenetic reconstructions. Plant Biol 5:400–410

    Article  CAS  Google Scholar 

  • Quandt D, Müller K, Stech M, Hilu KW, Frey W, Frahm JP, Borsch T (2004) Molecular evolution of the chloroplast trnL-F region in land plants. Monogr Syst Bot Missouri Bot Gard 98:13–37

    Google Scholar 

  • Quandt D, Wanke S, Müller K, Hernández-Maqueda R, Stech M, Löhne C, Hilu KW, Borsch T (2006) The role of hairpins in molecular evolution. Abstract no. 738. Presented at “Botany 2006,” BSA international conference, Chico, CA, USA, July 28-August 2, 2006. Abstract no. 738

  • Rahmanzadeh R, Müller K, Fischer E, Bartels D, Borsch T (2005) Linderniaceae and Gratiolaceae are further lineages distinct from Scrophulariaceae (Lamiales). Plant Biol 7:67–78

    Article  CAS  PubMed  Google Scholar 

  • Raubeson LA, Jansen RK (1992) Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255:1697–1699

    Article  CAS  PubMed  Google Scholar 

  • Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Henry RJ (ed) Plant diversity and evolution: genotypic and phenotypic variation in higher plants. CAB International, Cambridge, pp 45–68

    Chapter  Google Scholar 

  • Raubeson LA, Peery R, Chumley TW, Dziubek C, Fourcade HM, Boore JL, Jansen RK (2007) Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics 8:174

    Article  PubMed  CAS  Google Scholar 

  • Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72:132–140

    Article  Google Scholar 

  • Renner SS (1999) Circumscription and phylogeny of the Laurales: evidence from molecular and morphological data. Am J Bot 86:1301–1315

    Article  CAS  PubMed  Google Scholar 

  • Renner SS, Chanderbali AS (2000) What is the relationship among Hernadiaceae, Lauraceae, and Monimiaceae, and why is this question so difficult to answer? Int J Plant Sci 161:S109–S119

    Article  CAS  Google Scholar 

  • Richardson JE, Fay MF, Cronk QCB, Bowman D, Chase MW (2000) A phylogenetic analysis of Rhamnaceae using rbcL and trnL-F plastid DNA sequences. Am J Bot 87:1309–1324

    Article  CAS  PubMed  Google Scholar 

  • Rokas A, Carroll SB (2008) Frequent and widespread parallel evolution of protein sequences. Mol Biol Evol 25:1943–1953

    Article  CAS  PubMed  Google Scholar 

  • Roper JM, Hansen SK, Wolf PG, Karol KG, Mandoli DF, Everett KDE, Kuehl J, Boore JL (2007) The complete plastid genome sequence of Angiopteris erecta (G. Forst.) Hoffm. (Marattiaceae). Am Fern J 97:95–106

    Article  Google Scholar 

  • Sakai M, Kanazawa A, Fujii A, Thseng FS, Abe J, Shimamoto Y (2003) Phylogenetic relationships of the chloroplast genomes in the genus Glycine inferred from four intergenic spacer sequences. Plant Syst Evol 239:29–54

    Article  CAS  Google Scholar 

  • Sakai A, Takano H, Kuroiwa T (2004) Organelle nuclei in higher plants: structure, composition, function, and evolution. Int Rev Cytol 238:59–118

    Article  CAS  PubMed  Google Scholar 

  • Sánchez del-Pino I, Borsch T, Motley TJ (2009) trnL-F and rpl16 sequence data and dense taxon sampling reveal monophyly of unilocular anthered Gomphrenoideae (Amaranthaceae), and an improved picture of their internal relationships. Syst Bot 34:57–67

    Google Scholar 

  • Sang T, Crawford D, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136

    Article  CAS  Google Scholar 

  • Sass C, Little DP, Stevenson DW, Specht CD (2007) DNA barcoding markers for species identification of Cycads. PLoS ONE 2(11):e1154. doi:10.1371/journal.pone.0001154

    Article  PubMed  CAS  Google Scholar 

  • Sauquet H, Doyle JA, Scharaschkin T, Borsch T, Hilu KW, Chatrou LW, Le Thomas A (2003) Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: implications for character evolution. Bot J Linn Soc 142:125–186

    Article  Google Scholar 

  • Savolainen V, Spichiger R, Manen JF (1997) Polyphyletism of Celastrales deduced from a chloroplast noncoding DNA region. Mol Phylogenet Evol 7:145–157

    Article  CAS  PubMed  Google Scholar 

  • Scheen A-C, Brochmann C, Brysting AK, Elven R, Morris A, Soltis DE, Soltis PS, Albert VA (2004) Northern hemisphere biogeography of Cerastium (Caryophyllaceae): insights from phylogenetic analysis of noncoding plastid nucleotide sequences. Am J Bot 91:943–952

    Article  CAS  Google Scholar 

  • Schmickl R, Kiefer C, Dobeš C, Koch MA (2009) Evolution of trnF(GAA) pseudogenes in cruciferous plants. Plant Syst Evol (this volume, pp 229–240). doi:10.1007/s00606-008-0030-2

  • Seberg O, Petersen G (2009) How many loci does it take to DNA barcode a crocus? PloS ONE 4(2):e4598. doi:10.1371/journal.pone.0004598

    Article  PubMed  CAS  Google Scholar 

  • Shaver JM, Oldenburg DJ, Bendich AJ (2006) Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. Planta 224:72–82

    Article  CAS  PubMed  Google Scholar 

  • Shaw J, Lickey E, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166

    Article  CAS  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome—its gene organization and expression. EMBO J 5:2043–2049

    CAS  PubMed  Google Scholar 

  • Simmons MP, Ochoterena H, Carr TG (2001) Incorporation, relative homoplasy, and effect of gap characters in sequence-based phylogenetic analyses. Syst Biol 50:454–462

    Article  CAS  PubMed  Google Scholar 

  • Simmons MP, Zhang LB, Webb CT, Reeves A (2006) How can third codon positions outperform first and second codon positions in phylogenetic inference? An empirical example from the seed plants. Syst Biol 55:245–258

    Article  PubMed  Google Scholar 

  • Small RL, Ryborn JA, Cronn RC, Seelanan T, Wendel JF (1998) The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogenetic reconstruction in a recently diverged plant group. Am J Bot 85:1301–1315

    Article  CAS  Google Scholar 

  • Small RL, Lickey EB, Shawa J, Hauk WD (2005) Amplification of noncoding chloroplast DNA for phylogenetic studies in lycophytes and monilophytes with a comparative example of relative phylogenetic utility from Ophioglossaceae. Mol Phylogenet Evol 36:509–522

    Article  CAS  PubMed  Google Scholar 

  • Soejima A, Wen J (2006) Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers. Am J Bot 93:278–287

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1998) Choosing an approach and appropriate gene for phylogenetic analysis. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II. DNA sequencing. Kluwer, London, pp 1–42

    Google Scholar 

  • Sotiaux A, Enroth J, Olsson S, Quandt D, Vanderpoorten A (2009) When morphology and molecules tell us different stories: a case-in-point with Leptodon corsicus, a new and unique endemic moss species from Corsica. J Bryol (in press)

  • Stech M, Quandt D (2006) Molecular evolution and phylogenetic utility of the chloroplast atpB-rbcL spacer in bryophytes. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol 2B. Science Publishers, Enfield, pp 409–431

    Google Scholar 

  • Stech M, Quandt D, Frey W (2003) Molecular evolution of the chloroplast DNA trnL-trnF region in the hornworts (Anthocerotophyta) and its phylogenetic implications. J Plant Res 116:389–398

    Article  CAS  PubMed  Google Scholar 

  • Štorchová H, Olson MS (2004) Comparison between mitochondrial and chloroplast DNA variation in the native range of Silene vulgaris. Mol Ecol 13:2909–2910

    Article  PubMed  CAS  Google Scholar 

  • Štorchová H, Olson MS (2007) The architecture of the chloroplast psbA-trnH noncoding region in angiosperms. Plant Syst Evol 268:235–256

    Article  CAS  Google Scholar 

  • Su Y-J, Wang T, Zheng B, Jiang Y, Ouyang P-Y, Chen G-P (2005) Genetic variation and phylogeographical patterns in Alsophila podophylla from southern China based on cpDNA atpB-rbcL sequence data. Am Fern J 95:68–97

    Article  Google Scholar 

  • Sugiura M, Hirose T, Sugita M (1998) Evolution and mechanisms of translation in chloroplasts. Annu Rev Genet 32:437–459

    Article  CAS  PubMed  Google Scholar 

  • Sugiura C, Kobayashi Y, Aoki S, Sugita C, Sugita M (2003) Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucl Acids Res 31:5324–5331

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2001) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates, Sunderland, pp 407–514

    Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of 3 noncoding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E (2007) Power and limitations of the chloroplast trnL(UAA) intron for plant DNA barcoding. Nucl Acids Res 35:e14

    Article  PubMed  CAS  Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  CAS  PubMed  Google Scholar 

  • Tan B, Liu K, Yue XL, Liu F, Chen JM, Wang QF (2008) Chloroplast DNA variation and phylogeographic patterns in the Chinese endemic marsh herb Sagittaria potamogetifolia. Aquat Bot 89:372–378

    Article  CAS  Google Scholar 

  • Tautz D, Trick M, Dover GA (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322:652–656

    Article  CAS  PubMed  Google Scholar 

  • Tesfaye K, Borsch T, Govers K, Bekele E (2007) Characterization of Coffea chloroplast microsatellites and evidence for the recent divergence of C. arabica and C. eugenioides chloroplast genomes. Genome 50:1112–1129

    Article  CAS  PubMed  Google Scholar 

  • Teshima KM, Innan H (2008) Neofunctionalization of duplicated genes under the pressure of gene conversion. Genetics 178:1385–1398

    Article  CAS  PubMed  Google Scholar 

  • Testolin R, Cipriani G (1997) Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in the genus Actinidia. Theor Appl Genet 94:897–903

    Article  CAS  Google Scholar 

  • Thorne JL, Kishino H, Felsenstein J (1992) Inching towards reality: an improved likelihood model of sequence evolution. J Mol Evol 34:3–16

    Article  CAS  PubMed  Google Scholar 

  • Timme TE, Kuehl JV, Boore JL, Jansen RK (2007) A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Am J Bot 94:301–312

    Google Scholar 

  • Toor N, Hausner G, Zimmerly S (2001) Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7:1142–1152

    Article  CAS  PubMed  Google Scholar 

  • Tsudzuki J, Nakashima K, Tsudzuki T, Hiratsuka J, Shibata M, Wakasugi T, Sugiura M (1992) Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trnQ, trnK, psbA, trnI and trnH and the absence of rps16. Mol Gen Genet 232:206–214

    CAS  PubMed  Google Scholar 

  • Tsuji S, Ueda K, Nishiyama T, Hasebe M, Yoshikawa S, Konagaya A, Nishiuchi T, Yamaguchi K (2007) The chloroplast genome from a lycophyte (microphyllophyte), Selaginella uncinata, has a unique inversion, transpositions and many gene losses. J Plant Res 120:281–290

    Article  CAS  PubMed  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2002) The chloroplast and mitochondrial genome sequences of the charophyte Chaeotosphaeridium globosum: insights into the timing of the events that reconstructed organelle DNAs within the green algal lineage that led to land plants. Proc Natl Acad Sci USA 99:11275–11280

    Article  CAS  PubMed  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2006) The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Mol Biol Evol 23:1324–1338

    Article  CAS  PubMed  Google Scholar 

  • Van Ham RCHJ, ‘t Hart H, Mes THM, Sandbrink JM (1994) Molecular evolution of noncoding regions of the chloroplast genome in the Crassulaceae and related species. Curr Genet 25:558–566

    Article  PubMed  Google Scholar 

  • Vanderpoorten A, Long DG (2006) Budding speciation and neotropical origin of the Azorean endemic liverwort, Leptoscyphus azoricus. Mol Phylogenet Evol 40:73–83

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen H, Theriot E (2008) Building trees of algae: some advances in phylogenetic and evolutionary analysis. Eur J Phycol 43:229–252

    Article  Google Scholar 

  • Vijverberg K, Bachmann K (1999) Molecular evolution of a tandemly repeated trnF(GAA) gene in the chloroplast genome of Microseris (Asteraceae) and the use of structural mutations in phylogenetic analysis. Mol Biol Evol 16:1329–1340

    CAS  PubMed  Google Scholar 

  • Vogel J, Börner T, Hess W (1999) Comparative analysis of splicing of the complete set of chloroplast group II introns in three higher plant mutants. Nucleic Acids Res 27:3866–3874

    Article  CAS  PubMed  Google Scholar 

  • Wakasugi T, Tsudsuki J, Ito S, Nakashima K, Tsudsuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA 91:9794–9798

    Article  CAS  PubMed  Google Scholar 

  • Wakasugi T, Nishikawa A, Yamada K, Sugiura M (1998) Complete nucleotide sequence of the plastid genome from a fern, Psilotum nudum. Endocytobiosis Cell Res 13(Suppl):147

    Google Scholar 

  • Wanke S, Quandt D, Neinhuis C (2006) Universal primers for a large cryptically simple cpDNA microsatellite region in Aristolochia. Mol Ecol Notes 6:1051–1053

    Article  CAS  Google Scholar 

  • Wanke S, Jaramillo MA, Borsch T, Samain MS, Quandt D, Neinhuis C (2007) Evolution of the Piperales—matK and trnK intron sequence data reveals a lineage specific resolution contrast. Mol Phylogenet Evol 42:477–497

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Kajita T, Murata J (2006) Chloroplast DNA variation and geographical structure of the Aristolochia kaempferi group (Aristolochiaceae). Am J Bot 93:442–453

    Article  CAS  Google Scholar 

  • Weising K, Gardner RC (1999) A set of universal PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19

    Article  CAS  PubMed  Google Scholar 

  • Westhoff P, Herrmann RG (1988) Complex RNA maturation in the chloroplast: the psbB operon from spinach. Eur J Biochem 171:551–564

    Article  CAS  PubMed  Google Scholar 

  • Wicke S, Quandt D (2009) Universal primers for amplification of the trnK/matK region in land plants. Anales Jard Bot Madrid (in press)

  • Wickett NJ, Zhang Y, Hansen SK, Roper JM, Kuehl JV, Plock SA, Wolf PG, DePamphilis CW, Boore JL, Goffinet B (2008) Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis. Mol Biol Evol 25:393–401

    Article  CAS  PubMed  Google Scholar 

  • Wissemann V, Ritz CM (2005) The genus Rosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy. Bot J Linn Soc 147:275–290

    Article  Google Scholar 

  • Wolf PG, Rowe CA, Sinclair RB, Hasebe M (2003) Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris L. DNA Res 10:59–65

    Article  CAS  PubMed  Google Scholar 

  • Wolf PG, Karol KG, Mandoli DF, Kuehl J, Arumuganathan K, Ellis MW, Mishler BD, Kelch DG, Olmstead RG, Boore JL (2005) The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae). Gene 350:117–128

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652

    Article  CAS  PubMed  Google Scholar 

  • Won H, Renner SS (2005) The chloroplast trnT-trnF region in the seed plant lineage Gnetales. J Mol Evol 61:425–436

    Article  CAS  PubMed  Google Scholar 

  • Worberg A, Quandt D, Barniske A-M, Löhne C, Hilu KW, Borsch T (2007) Phylogeny of basal eudicots: insights from noncoding and rapidly evolving DNA. Org Divers Evol 7:55–77

    Article  Google Scholar 

  • Worberg A, Alford MH, Quandt D, Borsch T (2009) Huerteales sister to Brassicales plus Malvales, and newly circumscribed to include Dipentodon, Gerrardina, Huertea, Perrottetia, and Tapiscia. Taxon 58:468–478

    Google Scholar 

  • Wu CS, Wang YN, Liu SM, Chaw SM (2007) Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants. Mol Biol Evol 24:1366–1379

    Article  CAS  PubMed  Google Scholar 

  • Wu CH, Lai YT, Lin CP, Wang YN, Chaw SM (2009) Evolution of reduced and compact chloroplast genomes (cpDNAs) in gnetophytes: selection toward a lower-cost strategy. Mol Phylogenet Evol. doi:10.1016/j.ympev.2008.12.026

  • Xu MQ, Kathe SD, Goodrich-Blair H, Nierzwicki-Bauer SA, Shub DA (1990) Bacterial origin of a chloroplast intron: conserved self-splicing group-I introns in cyanobacteria. Science 250:1566–1570

    Article  CAS  PubMed  Google Scholar 

  • Xu DH, Sakai AJ, Kanazawa A, Shimamoto A, Shimamoto Y (2000) Sequence variation of noncoding regions of chloroplast DNA of soybean and related wild species and its implications for the evolution of different chloroplast haplotypes. Theor Appl Genet 101:724–732

    Article  CAS  Google Scholar 

  • Yamaguchi K, von Knoblauch K, Subramanian AR (2000) The plastid ribosomal proteins: identification of all the proteins in the 30 S subunit of an organelle ribosome (chloroplast). J Biol Chem 275:28455–28465

    Article  CAS  PubMed  Google Scholar 

  • Yang F-S, Wang X-Q (2007) Extensive length variation in the cpDNA trnT-trnF region of hemiparasitic Pedicularis and its phylogenetic implications. Plant Syst Evol 264:251–264

    Article  CAS  Google Scholar 

  • Young ND, dePamphilis CW (2000) Purifying selection detected in the plastid gene matK and flanking ribozyme regions within a group II intron of nonphotosynthetic plants. Mol Biol Evol 17:1933–1941

    CAS  PubMed  Google Scholar 

  • Zerges W (2000) Translation in chloroplasts. Biochimie 82:583–601

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the Deutsche Forschungsgemeinschaft to T.B. (BO1815/2) and D.Q. (QU153/2) for the project “Mutational dynamics of noncoding genomic regions and their potential for reconstructing eudicot evolution.” Karsten Salomo (Dresden) provided unpublished data for Fig. 5 and Kim Govers (Berlin) helped with preparing Fig. 1. Various kinds of support by Susi Wicke (Vienna/Bonn) and Markus Ackermann (Berlin) are appreciated. We kindly acknowledge helpful comments by Scot Kelchner and David Morrison to an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Borsch or Dietmar Quandt.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00606-009-0233-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borsch, T., Quandt, D. Mutational dynamics and phylogenetic utility of noncoding chloroplast DNA. Plant Syst Evol 282, 169–199 (2009). https://doi.org/10.1007/s00606-009-0210-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-009-0210-8

Keywords

Navigation