Skip to main content
Log in

Restricted non-linear approximation in sequence spaces and applications to wavelet bases and interpolation

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Restricted non-linear approximation is a type of N-term approximation where a measure ν on the index set (rather than the counting measure) is used to control the number of terms in the approximation. We show that embeddings for restricted non-linear approximation spaces in terms of weighted Lorentz sequence spaces are equivalent to Jackson and Bernstein type inequalities, and also to the upper and lower Temlyakov property. As applications we obtain results for wavelet bases in Triebel–Lizorkin spaces by showing the Temlyakov property in this setting. Moreover, new interpolation results for Triebel–Lizorkin and Besov spaces are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida A.: Wavelet bases in generalized Besov spaces. J. Math. Anal. Appl. 304, 198–211 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergh J., Löfström J.: Interpolation Spaces: an Introduction. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  3. Bennett C., Sharpley R.C.: Interpolation of Operators. Academic Press, Boston (1988)

    MATH  Google Scholar 

  4. Bui H.-Q.: Weighted Besov and Triebel–Lizorkin spaces: Interpolation by the real method. Hiroshima Math. J. 12, 581–605 (1982)

    MathSciNet  MATH  Google Scholar 

  5. Carro, M., Raposo, J., Soria, J.: Recent developments in the theory of Lorentz spaces and weighted inequalities. Memoirs Amer. Math. Soc. 187(877) (2007)

  6. Cohen A., DeVore R.A., Hochmuth R.: Restricted nonlinear approximation. Constr. Approx. 16, 85–113 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carro M.J., Soria J.: Weighted Lorentz spaces and the Hardy operator. J. Funct. Anal. 112, 480–494 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Daubechies, I.: Ten Lectures on Wavelets. In: CBMS-NSF Regional Conference Series in Applied Maths., vol. 61. SIAM, Philadelphia (1992)

  9. DeVore R.A., Lorentz G.G.: Constructive approximation. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  10. DeVore, R.A., Popov, V.: Interpolation spaces and non-linear approximation. In: Cwikel M., Peetre J., Sagher Y., Wallin H.E. (Eds.) Function Spaces and Applications, Lecture Notes in Mathematics, vol. 1302, pp. 191–205. Springer, Berlin (1988)

  11. Frazier, M., Jawerth, B.: The φ transform and applications to distribution spaces. In: Cwikel M., Peetre J., Sagher Y., Wallin H.E. (eds.) Function Spaces and Applications, Lecture Notes in Mathematics, vol. 1302, pp. 223–246, Springer, Berlin (1988)

  12. Frazier M., Jawerth B.: A discrete transform and decomposition of distribution spaces. J. Funct. Anal. 93, 34–170 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley theory and the study of function spaces. In: CBMS Regional Conference Series in Mathematics, vol. 79 (1991)

  14. Garrigós G., Hernández E.: Sharp Jackson and Bernstein inequalities for N-term approximation in sequence spaces with applications. Indiana Univ. Math. J. 53(6), 1741–1764 (2004)

    Article  MATH  Google Scholar 

  15. Garrigós G., Hernández E., Martell J.M.: Wavelets, Orlicz spaces and Greedy bases. Appl. Comput. Harmon. Anal 24(1), 70–93 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garrigós, G., Hernández, E., de Natividade, M.: Democracy functions and optimal embeddings for approximation spaces. Adv. Comput. Math. (Online: 23 September 2011). doi:10.1007/s10444-011-9197-0

  17. Hernández E., Weiss G.: A first course on Wavelets. CRC Press, Boca Raton (1996)

    Book  MATH  Google Scholar 

  18. Hsiao C.C., Jawerth B., Lucier B.J., Yu X.M.: Near optimal compression of optimal wavelet expansions. In: Benedetto, J.J., Frazier, M.W. (eds) Wavelets: Mathematics and Applications, Studies in Advanced Mathematics, pp. 425–446. CRC, Boca Raton (1994)

    Google Scholar 

  19. Hochmuth R.: Anisotropic wavelet bases and thresholding. Math. Nachr. 280(5-6), 523–533 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kerkyacharian G., Picard D.: Entropy, universal coding, approximation, and bases properties. Constr. Approx. 20, 1–37 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kerkyacharian G., Picard D.: Nonlinear approximation and Muckenhoupt weights. Constr. Approx. 24, 123–156 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Krein, S., Petunin, J., Semenov, E.: Interpolation of linear operators. In: Translations Math. Monographs, vol. 55. American Mathematical Society, Providene (1992)

  23. Kyriazis G.: Multilevel characterization of anisotropic function spaces. SIAM J. Math. Anal. 36, 441–462 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lemarié P.G., Meyer Y.: Ondelettes et bases Hilbertiannes. Rev. Mat. Iberoamericana 2, 1–18 (1986)

    Article  MathSciNet  Google Scholar 

  25. Mallat S.: A wavelet tour of signal processing. 2nd edn. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  26. Merucci, C.: Applications of interpolation with a function parameter to Lorentz, Sobolev and Besov spaces. In: Cwikel M., Peetre J. (eds.) Interpolation Spaces and Allied Topics in Analysis, Lecture Notes in Mathematics, vol. 1070, pp. 183–201. Springer, Berlin (1984)

  27. Meyer, Y.: Ondelettes et opérateurs, I: Ondelettes, Hermann, Paris, 1990. [English translation: Wavelets and operators, Cambridge University Press, Cambridge (1992)]

  28. Pietsch A.: Approximation spaces. J. Approx. Theory 32, 115–134 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stein E.M., Weiss G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  30. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Hernández.

Additional information

Communicated by K. Gröchenig.

This research was supported by GrantS MTM2007-60952 and MTM2010-16518 of Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández, E., Vera, D. Restricted non-linear approximation in sequence spaces and applications to wavelet bases and interpolation. Monatsh Math 169, 187–217 (2013). https://doi.org/10.1007/s00605-012-0425-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-012-0425-6

Keywords

Mathematics Subject Classification (2000)

Navigation