Skip to main content
Log in

Ratiometric electrochemical determination of hydroxyl radical based on graphite paper modified with metal–organic frameworks and impregnated with salicylic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Hydroxyl radical (•OH) detection is pivotal in medicine, biochemistry and environmental chemistry. Yet, electrochemical method–specific detection is challenging because of hydroxyl radicals’ high reactivity and short half-life. In this study, we aimed to modify the electrode surface with a specific recognition probe for •OH. To achieve this, we conducted a one-step hydrothermal process to fabricate a CoZnMOF bimetallic organic framework directly onto conductive graphite paper (Gp). Subsequently, we introduced salicylic acid (SA) and methylene blue (MB), which easily penetrated the pores of CoZnMOF. By selectively capturing •OH by SA and leveraging the electrochemical signal generated by the reaction product, we successfully developed an electrochemical sensor Gp/CoZnMOF/SA + MB. The prepared sensor exhibited a good linear relationship with •OH concentrations ranging from 1.25 to 1200 nM, with a detection limit of 0.2 nM. Additionally, the sensor demonstrated excellent reproducibility and accuracy due to the incorporation of an internal reference. It exhibited remarkable selectivity for •OH detection, unaffected by other electrochemically active substances. The establishment of this sensor provides a way to construct MOF-modified sensors for the selective detection of other reactive oxygen species (ROS), offering a valuable experimental basis for ROS-related disease research and environmental safety investigations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, Murphy MP, Yamamoto M, Winterbourn C (2022) Defining roles of specific reactive oxygen species (ros) in cell biology and physiology. Nat Rev Mol Cell Biol 23(7):499–515. https://doi.org/10.1038/s41580-022-00456-z

    Article  CAS  PubMed  Google Scholar 

  2. Wu L, Ishigaki Y, Zeng W, Harimoto T, Yin B, Chen Y, Liao S, Liu Y, Sun Y, Zhang X, Liu Y, Liang Y, Sun P, Suzuki T, Song G, Fan Q, Ye D (2021) Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy. Nat Commun 12(1):6145. https://doi.org/10.1038/s41467-021-26380-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Halliwell B, Adhikary A, Dingfelder M, Dizdaroglu M (2021) Hydroxyl radical is a significant player in oxidative DNA damage in vivo. Chem Soc Rev 50(15):8355–8360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang C, Wang Z, Zeng B, Zheng M, Xiao N, Zhao Z (2021) Fenton-like reaction of the iron(ii)–histidine complex generates hydroxyl radicals: implications for oxidative stress and Alzheimer’s disease. Chem Commun 57(92):12293–12296. https://doi.org/10.1039/D1CC05000A

    Article  CAS  Google Scholar 

  5. Zhu A, Guo Y, Liu G, Song M, Liang Y, Cai Y, Yin Y (2019) Hydroxyl radical formation upon dark oxidation of reduced iron minerals: effects of iron species and environmental factors. Chinese Chem Lett 30(12):2241–2244. https://doi.org/10.1016/j.cclet.2019.09.003

    Article  CAS  Google Scholar 

  6. Michail K, Siraki AG (2012) Post-trapping derivatization of radical-derived epr-silent adducts: application to free radical detection by hplc/uv in chemical, biochemical, and biological systems and comparison with epr spectroscopy. Anal Chem 84(15):6739–6746. https://doi.org/10.1021/ac301142c

    Article  CAS  PubMed  Google Scholar 

  7. Timmins GS, Liu KJ, Bechara EJH, Kotake Y, Swartz HM (1999) Trapping of free radicals with direct in vivo epr detection: a comparison of 5,5-dimethyl-1-pyrroline-n-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-n-oxide as spin traps for ho and so4•−. Free Radic Biol Med 27(3):329–333. https://doi.org/10.1016/S0891-5849(99)00049-0

    Article  CAS  PubMed  Google Scholar 

  8. Janik I, Bartels DM, Jonah CD (2007) Hydroxyl radical self-recombination reaction and absorption spectrum in water up to 350 °c. J Phys Chem A 111(10):1835–1843. https://doi.org/10.1021/jp065992v

    Article  CAS  PubMed  Google Scholar 

  9. Xue Y, Luan Q, Yang D, Yao X, Zhou K (2011) Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J Phys Chem C 115(11):4433–4438. https://doi.org/10.1021/jp109819u

    Article  CAS  Google Scholar 

  10. Yan K-C, Sedgwick AC, Zang Y, Chen G-R, He X-P, Li J, Yoon J, James TD (2019) Sensors, imaging agents, and theranostics to help understand and treat reactive oxygen species related diseases. Small Methods 3(7):1900013. https://doi.org/10.1002/smtd.201900013

    Article  CAS  Google Scholar 

  11. Wu J, Zhao Y, Li K, Muhammad S, Ju M, Liu L, Huang Y, Wang B, Ding W, Shen B, Huang H (2022) Fluorogenic toolbox for facile detecting of hydroxyl radicals: from designing principles to diagnostics applications. TrAC Trends Anal Chem 157:116734. https://doi.org/10.1016/j.trac.2022.116734

    Article  CAS  Google Scholar 

  12. Li Z, Liang T, Lv S, Zhuang Q, Liu Z (2015) A rationally designed upconversion nanoprobe for in vivo detection of hydroxyl radical. J Am Chem Soc 137(34):11179–11185. https://doi.org/10.1021/jacs12.5b06972

    Article  CAS  PubMed  Google Scholar 

  13. Wang J, Wang S (2020) Reactive species in advanced oxidation processes: formation, identification and reaction mechanism. Chem Eng J 401:126158. https://doi.org/10.1016/j.cej.2020.126158

    Article  CAS  Google Scholar 

  14. Linxiang L, Abe Y, Nagasawa Y, Kudo R, Usui N, Imai K, Mashino T, Mochizuki M, Miyata N (2004) An HPLC assay of hydroxyl radicals by the hydroxylation reaction of terephthalic acid. Biomed Chromatogr 18(7):470–474. https://doi.org/10.1002/bmc.339

    Article  CAS  PubMed  Google Scholar 

  15. Fojta M, Kubičárová T, Paleček E (2000) Electrode potential-modulated cleavage of surface-confined DNA by hydroxyl radicals detected by an electrochemical biosensor. Biosens Bioelectron 15(3):107–115. https://doi.org/10.1016/S0956-5663(00)00070-1

    Article  CAS  PubMed  Google Scholar 

  16. Barroso-Martinez JS, AI B, Pudar S, Putnam ST, Bustos E, Rodriguez-Lopez J (2022) Real-time detection of hydroxyl radical generated at operating electrodes via redox-active adduct formation using scanning electrochemical microscopy. J Am Chem Soc 144(41):18896–18907. https://doi.org/10.1021/jacs.2c06278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu L, Yang Y, Zhang H, Zhu G, Zhang X, Chen J (2012) Sensitive electrochemical detection of hydroxyl radical with biobarcode amplification. Analytica Chimica Acta 756:1–6. https://doi.org/10.1016/j.aca.2012.10.039

    Article  CAS  PubMed  Google Scholar 

  18. Duanghathaipornsuk S, Kim D-S, Phares TL, Li C-H, Jinschek JR, Alba-Rubio AC (2021) Supersensitive ceox-based nanocomposite sensor for the electrochemical detection of hydroxyl free radicals. Nanoscale 13(9):5136–5144. https://doi.org/10.1039/D1NR00015B

    Article  CAS  PubMed  Google Scholar 

  19. Hu Y-L, Lu Y, Zhou G-J, Xia X-H (2008) A simple electrochemical method for the determination of hydroxyl free radicals without separation process. Talanta 74(4):760–765. https://doi.org/10.1016/j.talanta.2007.07.008

    Article  CAS  PubMed  Google Scholar 

  20. Li S, Tian Y (2018) An electrochemical biosensor with dual signal outputs for ratiometric monitoring the levels of h2o2 and ph in the microdialysates from a rat brain. Electroanalysis 30(6):1047–1053. https://doi.org/10.1002/elan.201700684

    Article  CAS  Google Scholar 

  21. Liu L, Zhao F, Liu W, Zhu T, Zhang JZH, Chen C, Dai ZH, Peng HS, Huang JL, Hu Q, Bu WB, Tian Y (2017) An electrochemical biosensor with dual signal outputs: toward simultaneous quantification of ph and o-2 in the brain upon ischemia and in a tumor during cancer starvation therapy. Angewandte Chemie-Int Ed 56(35):10471–10475. https://doi.org/10.1002/anie.201705615

    Article  CAS  Google Scholar 

  22. Wang Z, Liu D, Gu H, Zhu AW, Tian Y, Shi GY (2013) Nta-modified carbon electrode as a general relaying substrate to facilitate electron transfer of sod: application to in vivo monitoring of o-2(center dot-) in a rat brain. Biosens Bioelectron 43:101–107. https://doi.org/10.1016/j.bios.2012.10.071

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Zhan LM, Tian Y (2018) Designing recognition molecules and tailoring functional surfaces for in vivo monitoring of small molecules in the brain. Acc Chem Res 51(3):688–696. https://doi.org/10.1021/acs.accounts.7b00543

    Article  CAS  Google Scholar 

  24. Zhou J, Liao C, Zhang L, Wang Q, Tian Y (2014) Molecular hydrogel-stabilized enzyme with facilitated electron transfer for determination of h2o2 released from live cells. Anal Chem 86(9):4395–4401. https://doi.org/10.1021/ac500231e

    Article  CAS  PubMed  Google Scholar 

  25. Qi Y-T, Jiang H, Wu W-T, Zhang F-L, Tian S-Y, Fan W-T, Liu Y-L, Amatore C, Huang W-H (2022) Homeostasis inside single activated phagolysosomes: quantitative and selective measurements of submillisecond dynamics of reactive oxygen and nitrogen species production with a nanoelectrochemical sensor. J Am Chem Soc 144(22):9723–9733. https://doi.org/10.1021/jacs.2c01857

    Article  CAS  PubMed  Google Scholar 

  26. Jiao Y-T, Jiang H, Wu W-T, Qi Y-T, Wen M-Y, Yang X-K, Kang Y-R, Zhang X-W, Amatore C, Huang W-H (2023) Dual-channel nanoelectrochemical sensor for monitoring intracellular ros and nadh kinetic variations of their concentrations. Biosens Bioelectron 222:114928. https://doi.org/10.1016/j.bios.2022.114928

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X-W, Oleinick A, Jiang H, Liao Q-L, Qiu Q-F, Svir I, Liu Y-L, Amatore C, Huang W-H (2019) Electrochemical monitoring of ros/rns homeostasis within individual phagolysosomes inside single macrophages. Angew Chem Int Ed 58(23):7753–7756. https://doi.org/10.1002/anie.201902734

    Article  CAS  Google Scholar 

  28. Fan W-T, Qin Y, Hu X-B, Yan J, Wu W-T, Liu Y-L, Huang W-H (2020) Stretchable electrode based on au@pt nanotube networks for real-time monitoring of ros signaling in endothelial mechanotransduction. Anal Chem 92(23):15639–15646. https://doi.org/10.1021/acs.analchem.0c04015

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X-W, Qiu Q-F, Jiang H, Zhang F-L, Liu Y-L, Amatore C, Huang W-H (2017) Real-time intracellular measurements of ros and rns in living cells with single core–shell nanowire electrodes. Angewandte Chemie Internat Ed 56(42):12997–13000. https://doi.org/10.1002/anie.201707187

    Article  CAS  Google Scholar 

  30. Ding S, Li M, Gong H, Zhu Q, Shi G, Zhu A (2020) Sensitive and selective measurement of hydroxyl radicals at subcellular level with tungsten nanoelectrodes. Anal Chem 92(3):2543–2549. https://doi.org/10.1021/acs.analchem.9b04139

    Article  CAS  PubMed  Google Scholar 

  31. Ju J, Liu X, Yu JJ, Sun K, Fathi F, Zeng X (2020) Electrochemistry at bimetallic Pd/Au thin film surfaces for selective detection of reactive oxygen species and reactive nitrogen species. Anal Chem 92(9):6538–6547. https://doi.org/10.1021/acs.analchem.0c00140

    Article  CAS  PubMed  Google Scholar 

  32. Yang Y, Zhou J, Zhang Y, Zou Q, Zhang X, Chen J (2013) Sensitive electrochemical detection of hydroxyl radical based on mbs–DNA–agnps nanocomposite. Sens Actuators B: Chemical 182:504–509. https://doi.org/10.1016/j.snb.2013.03.071

    Article  CAS  Google Scholar 

  33. Huang Z, Xu Q, Hu X (2020) Covalent organic frameworks functionalized carbon fiber paper for the capture and detection of hydroxyl radical in the atmosphere. Chin Chem Lett 31(9):2495–2498. https://doi.org/10.1016/j.cclet.2020.06.017

    Article  CAS  Google Scholar 

  34. Huang Z, Ji Z, Yin P, Shu Y, Xu Q, Hu X-Y (2019) Salicylic acid impregnated activated carbon fiber paper: an effective platform for the simple and sensitive detection of hydroxyl radicals in the atmosphere. Electrochem Commun 100:113–116. https://doi.org/10.1016/j.elecom.2019.02.008

    Article  CAS  Google Scholar 

  35. Bektaşoğlu B, Özyürek M, Güçlü K, Apak R (2008) Hydroxyl radical detection with a salicylate probe using modified cuprac spectrophotometry and hplc. Talanta 77(1):90–97

    Article  PubMed  Google Scholar 

  36. Liu X, Yue T, Qi K, Qiu Y, Xia BY, Guo X (2020) Metal-organic framework membranes: from synthesis to electrocatalytic applications. Chin Chem Lett 31(9):2189–2201. https://doi.org/10.1016/j.cclet.2019.12.009

    Article  CAS  Google Scholar 

  37. Muthurasu A, Ojha GP, Lee M, Kim HY (2020) Integration of cobalt metal–organic frameworks into an interpenetrated prussian blue analogue to derive dual metal–organic framework-assisted cobalt iron derivatives for enhancing electrochemical total water splitting. J Phys Chem C 124(27):14465–14476. https://doi.org/10.1021/acs.jpcc.0c03086

    Article  CAS  Google Scholar 

  38. Cheng M, Lai C, Liu Y, Zeng G, Huang D, Zhang C, Qin L, Hu L, Zhou C, Xiong W (2018) Metal-organic frameworks for highly efficient heterogeneous fenton-like catalysis. Coord Chem Rev 368:80–92

    Article  CAS  Google Scholar 

  39. Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20(18):3557–3561. https://doi.org/10.1002/adma.200800757

    Article  CAS  Google Scholar 

  40. Cai W, Lai T, Du H, Ye J (2014) Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: a high performance flexible sensor. Sens Actuators B: Chemical 193:492–500

    Article  CAS  Google Scholar 

  41. da Silva JL, Buffon E, Beluomini MA, Pradela-Filho LA, Gouveia Araújo DA, Santos AL, Takeuchi RM, Stradiotto NR (2021) Non-enzymatic lactose molecularly imprinted sensor based on disposable graphite paper electrode. Anal Chimica Acta 1143:53–64. https://doi.org/10.1016/j.aca.2020.11.030

    Article  CAS  Google Scholar 

  42. Zhang X, Ding S-N (2017) Graphite paper-based bipolar electrode electrochemiluminescence sensing platform. Biosens Bioelectron 94:47–55. https://doi.org/10.1016/j.bios.2017.02.033

    Article  CAS  PubMed  Google Scholar 

  43. Demirbakan B, Kemal Sezgintürk M (2020) A novel ultrasensitive immunosensor based on disposable graphite paper electrodes for troponin t detection in cardiovascular disease. Talanta 213:120779. https://doi.org/10.1016/j.talanta.2020.120779

    Article  CAS  PubMed  Google Scholar 

  44. J Ouyang, Z-Q (2014) A rapid and sensitive method for hydroxyl radical detection on a microfluidic chip using an N-doped porous carbon nanofiber modified pencil graphite electrode. The Analyst 139–13. https://doi.org/10.1039/c4an00471j

  45. Z Wang, K Yi (2019) Free radical sensors based on inner-cutting graphene field-effect transistors. Nat Com 10–1544. https://www.ncbi.nlm.nih.gov/pubmed/30948705

  46. Elena I, Korotkova, Bashkim Misini (2011) Study of OH Radicals in human serum blood of healthy individuals and those with pathological schizophrenia. Int J Mol Sci 12–401. https://doi.org/10.3390/ijms12010401

  47. FJ Rivas , V Navarrete (2004) Simazine Fenton’s oxidation in a continuous reactor. Appl Catal B: Environmental 48–249. https://doi.org/10.1016/j.apcatb.2003.11.009

  48. Yun Whan,Kang, Kyung-Yub,Hwang (2000) Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Res 34–2786. https://doi.org/10.1016/S0043-1354(99)00388-7

  49. Fenglian Fu, Qi Wang (2009) Fenton and Fenton-like reaction followed by hydroxide precipitation in the removal of Ni(II) from NiEDTA wastewater: a comparative study. Chem Eng J 155–769. https://doi.org/10.1016/j.cej.2009.09.021

Download references

Funding

This study was financially supported by the Excellent Youth Fund of Henan Province (Grant No. 232300421084), National Natural Science Foundation of China (Grant No. 22104078, 22005185, 22074089), Natural Science Foundation of Henan Province (Grant No. 232300421234), Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 24HASTIT003), Program for Innovative Research Team (in Science and Technology) in University of Henan Province (No. 24IRTSTHN003) and Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases.

Author information

Authors and Affiliations

Authors

Contributions

Hui Dong and Zhenlong Jiang contributed equally to this work. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Hui Dong, Huabo Han, Xiaobing Wang or Lantao Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2826 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Jiang, Z., Chen, Y. et al. Ratiometric electrochemical determination of hydroxyl radical based on graphite paper modified with metal–organic frameworks and impregnated with salicylic acid. Microchim Acta 191, 121 (2024). https://doi.org/10.1007/s00604-024-06202-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06202-w

Keywords

Navigation