Skip to main content
Log in

Multi-aptamer–mediated hairpin allosteric and aptamer-assisted CRISPR system for detection of S. pneumoniae and S. aureus

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel nucleic acid aptamer nanoprobes-mediated hairpin allosteric and aptamer-assisted CRISPR system for detection of Streptococcus pneumoniae and Staphylococcus aureus is presented. In this fluorescence assay system, utilizing the hairpin allosteric effect caused by the aptamer binding to the target bacteria, the detection of S. pneumoniae is first achieved through changes in fluorescence due to FRET. Subsequently, a Cas12a protein mixture is added to detect S. aureus. The amplified output signal is triggered by two methods to ensure the sensitivity of the method: the synergistic FRET effect is achieved by the assembly of multi-aptamer through the conjugation of streptavidin–biotin, and the trans-cleavage function of CRISPR/Cas 12a. Under the optimized conditions, the proposed hairpin allosteric aptasensor could achieve high sensitivity (a detection limit of 135 cfu/mL) and broad-concentration quantification (dynamic range of 103–107 cfu/mL) of S. pneumoniae. The aptamer-assisted CRISPR system for S. aureus detection showed good linearity (R2 = 0.996) in the concentration range 102–108 cfu/mL, with a detection limit of 39 cfu/mL. No cross-reactivity with other foodborne pathogenic bacteria was observed in both systems. Taking only 55 min, this method of multiple pathogen detection proved to be promising.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or its supplementary materials].

References

  1. Park KS (2018) Nucleic acid aptamer-based methods for diagnosis of infections. Biosens Bioelectron 102:179–188. https://doi.org/10.1016/j.bios.2017.11.028

    Article  CAS  PubMed  Google Scholar 

  2. Hao X, Yeh P, Qin Y, Jiang Y, Qiu Z, Li S et al (2019) Aptamer surface functionalization of microfluidic devices using dendrimers as multi-handled templates and its application in sensitive detections of foodborne pathogenic bacteria. Anal Chim Acta 1056:96–107. https://doi.org/10.1016/j.aca.2019.01.035

    Article  CAS  PubMed  Google Scholar 

  3. Gutiérrez-Santana JC, Toscano-Garibay JD, López-López M, Coria-Jiménez VR (2020) Aptamers coupled to nanoparticles in the diagnosis and treatment of microbial infections. Enfermedades infecciosas y microbiologia clinica (English ed) 38(7):331–337. https://doi.org/10.1016/j.eimc.2019.12.004

    Article  PubMed  Google Scholar 

  4. Biswas P, Batra S, Gurha N, Maksane N (2022) Emerging antimicrobial resistance and need for antimicrobial stewardship for ocular infections in India: a narrative review. Indian J Ophthalmol 70(5):1513–1521. https://doi.org/10.4103/ijo.IJO_2537_21

    Article  PubMed  PubMed Central  Google Scholar 

  5. Eslami F, Ghasemi Basir HR, Moradi A, Heidari FS (2018) Microbiological study of dacryocystitis in northwest of Iran. Clin Ophthalmol (Auckland, NZ) 12:1859–1864. https://doi.org/10.2147/opth.S175463

    Article  CAS  Google Scholar 

  6. Manente R, Santella B, Pagliano P, Santoro E, Casolaro V, Borrelli A et al (2022) Prevalence and antimicrobial resistance of causative agents to ocular infections. Antibiotics (Basel, Switzerland) 11(4). https://doi.org/10.3390/antibiotics11040463

  7. Miller RR, Montoya V, Gardy JL, Patrick DM, Tang P (2013) Metagenomics for pathogen detection in public health. Genome Med 5(9):81. https://doi.org/10.1186/gm485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao X, Li M, Xu Z (2018) Detection of foodborne pathogens by surface enhanced Raman spectroscopy. Front Microbiol 9:1236. https://doi.org/10.3389/fmicb.2018.01236

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mi F, Hu C, Wang Y, Wang L, Peng F, Geng P et al (2022) Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: a review. Anal Bioanal Chem 414(9):2883–2902. https://doi.org/10.1007/s00216-021-03872-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu S, Zhao K, Huang M, Zeng M, Deng Y, Li S et al (2022) Research progress on detection techniques for point-of-care testing of foodborne pathogens. Front Bioeng Biotechnol 10:958134. https://doi.org/10.3389/fbioe.2022.958134

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shkembi X, Skouridou V, Svobodova M, Leonardo S, Bashammakh AS, Alyoubi AO et al (2021) Hybrid antibody-aptamer assay for detection of tetrodotoxin in pufferfish. Anal Chem 93(44):14810–14819. https://doi.org/10.1021/acs.analchem.1c03671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hong L, Pan M, Xie X, Liu K, Yang J, Wang S et al (2021) Aptamer-based fluorescent biosensor for the rapid and sensitive detection of allergens in food matrices. Foods (Basel, Switzerland) 10(11):2598. https://doi.org/10.3390/foods10112598

    Article  CAS  PubMed  Google Scholar 

  13. Buglak AA, Samokhvalov AV, Zherdev AV, Dzantiev BB (2020) Methods and applications of in silico aptamer design and modeling. Int J Mol Sci 21(22):8420. https://doi.org/10.3390/ijms21228420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stidham S, Villareal V, Chellappa V, Yoder L, Alley O, Shreffler W et al (2022) Aptamer based point of care diagnostic for the detection of food allergens. Sci Rep 12(1):1303. https://doi.org/10.1038/s41598-022-05265-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen W, Lai Q, Zhang Y, Liu Z (2022) Recent advances in aptasensors for rapid and sensitive detection of Staphylococcus aureus. Front Bioeng Biotechnol 10:889431. https://doi.org/10.3389/fbioe.2022.889431

    Article  PubMed  PubMed Central  Google Scholar 

  16. Reich P, Stoltenburg R, Strehlitz B, Frense D, Beckmann D (2017) Development of an impedimetric aptasensor for the detection of Staphylococcus aureus. Int J Mol Sci 18(11). https://doi.org/10.3390/ijms18112484

  17. Shen J, Zhou T, Huang R (2019) Recent advances in electrochemiluminescence sensors for pathogenic bacteria detection. Micromachines 10(8):532. https://doi.org/10.3390/mi10080532

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yu T, Xu H, Zhao Y, Han Y, Zhang Y, Zhang J et al (2020) Aptamer based high throughput colorimetric biosensor for detection of Staphylococcus aureus. Sci Rep 10(1):9190. https://doi.org/10.1038/s41598-020-66105-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma X, Lin X, Xu X, Wang Z (2021) Fabrication of gold/silver nanodimer SERS probes for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Mikrochim Acta 188(6):202. https://doi.org/10.1007/s00604-021-04791-4

    Article  CAS  PubMed  Google Scholar 

  20. Li Z, Zhao W, Ma S, Li Z, Yao Y, Fei T (2021) A chemical-enhanced system for CRISPR-based nucleic acid detection. Biosens Bioelectron 192:113493. https://doi.org/10.1016/j.bios.2021.113493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao G, Wang J, Yao C, Xie P, Li X, Xu Z et al (2022) Alkaline lysis-recombinase polymerase amplification combined with CRISPR/Cas12a assay for the ultrafast visual identification of pork in meat products. Food Chem 383:132318. https://doi.org/10.1016/j.foodchem.2022.132318

    Article  CAS  PubMed  Google Scholar 

  22. Teng J, Yuan F, Ye Y, Zheng L, Yao L, Xue F et al (2016) Aptamer-based technologies in foodborne pathogen detection. Front Microbiol 7:1426. https://doi.org/10.3389/fmicb.2016.01426

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li HY, Jia WN, Li XY, Zhang L, Liu C, Wu J (2020) Advances in detection of infectious agents by aptamer-based technologies. Emerg Microbes Infect 9(1):1671–1681. https://doi.org/10.1080/22221751.2020.1792352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang CH, Lee GB (2020) Screening of multiple hemoprotein-specific aptamers and their applications for the binding, quantification, and extraction of hemoproteins in a microfluidic system. Biomicrofluidics 14(2):024110. https://doi.org/10.1063/1.5141871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu Y, Han J, Yin J, Huang J, Liu J, Geng L et al (2022) Dual-target electrochemical sensor based on 3D MoS(2)-rGO and aptamer functionalized probes for simultaneous detection of mycotoxins. Front Chem 10:932954. https://doi.org/10.3389/fchem.2022.932954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yan C, Zhang J, Yao L, Xue F, Lu J, Li B et al (2018) Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food. Food Chem 260:208–212. https://doi.org/10.1016/j.foodchem.2018.04.014

    Article  CAS  PubMed  Google Scholar 

  27. Bilibana MP, Citartan M, Fuku X, Jijana AN, Mathumba P, Iwuoha E (2022) Aptamers functionalized hybrid nanomaterials for algal toxins detection and decontamination in aquatic system: current progress, opportunities, and challenges. Ecotoxicol Environ Saf 232:113249. https://doi.org/10.1016/j.ecoenv.2022.113249

    Article  CAS  PubMed  Google Scholar 

  28. McKeague M (2017) Aptamers for DNA damage and repair. Int J Mol Sci 18(10):2212. https://doi.org/10.3390/ijms18102212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perez-Gonzalez C, Lafontaine DA, Penedo JC (2016) Fluorescence-based strategies to investigate the structure and dynamics of aptamer-ligand complexes. Front Chem 4:33. https://doi.org/10.3389/fchem.2016.00033

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors acknowledge the support from the Key Project of Sichuan Province (No. 22ZDYF1033), the central government guides local science and technology development funds to be directed transfer payment projects (No. 22ZYZF0007), the National Natural Science Foundation of China (No. 2022NSFSC1426), and Wine City Excellence—Science and Technology Innovation Team ([2021] 162).

Author information

Authors and Affiliations

Authors

Contributions

Limei Zhang: conceptualization, data curation, writing—original draft, writing—review and editing. Xuejing Xu: writing—review and editing, visualization. Linhong Cao: writing—review and editing. Zixin Zhu: writing—review and editing. Yinhuan Ding: funding support. Hui Jiang: data curation. Baolin Li: writing—review and editing, supervision. Jinbo Liu: funding support, supervision.

Corresponding authors

Correspondence to Baolin Li or Jinbo Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 690 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xu, X., Cao, L. et al. Multi-aptamer–mediated hairpin allosteric and aptamer-assisted CRISPR system for detection of S. pneumoniae and S. aureus. Microchim Acta 191, 29 (2024). https://doi.org/10.1007/s00604-023-06094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06094-2

Keywords

Navigation