Skip to main content
Log in

Toward the rapid diagnosis of sepsis: dendritic copper nanostructure functionalized diazonium salt modified screen-printed graphene electrode for IL-6 detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Sepsis, an infectious disease affecting millions of people’s health worldwide each year, calls for urgent attention to an improvement of analytical devices. Chemiluminescence immunoassay is a typical diagnostic method utilized to assess the risk development of sepsis. However, due to its high-cost, delayed, and complicated procedure, the practical utilization is therefore undoubtedly limited, especially for point-of-care test. Herein, we fabricated for the first time an immunosensor based on dendritic copper nanostructures (CuNSs) combined with 4-aminobenzoic acid (4-AB, the diazonium salt) as antibody linker modified on a screen-printed graphene electrode for the early detection of the sepsis biomarker interleukin-6 (IL-6). The electrode fabrication is made by electrodeposition, thus eliminating the multistep of nanomaterial synthesis and time wasting. The resulting dendritic CuNSs significantly increase the effective surface area (1.2 times) and the sensor’s performance. The morphology of this combination was characterized using CV, EIS, SEM, EDX, and FTIR techniques. In the detection process, the appearance of IL-6 suppresses the current response of the redox probe indicator measured by differential pulse voltammetry due to the antibody-antigen complex. The subtraction of signal (ΔI) was interpreted as IL-6 concentration. This sensor exhibited a linear range from 0.05 to 500 pg mL−1 with low detection limit of 0.02 pg mL−1, proving a possibility for early sepsis screening. In addition, the established immunosensor can successfully quantify IL-6 in human serum sample, in which the results agreed well with those achieved using the standard approach, further showing high practical applicability of this developed immunosensor.

Graphical abstract

Highlights

  • Immunosensor based on CuNSs combined with 4-AB for IL-6 was first demonstrated.

  • Composite of CuNSs and 4-AB significantly enhanced the sensor’s performance.

  • Extremely high sensitivity with excellent selectivity was achieved.

  • The sensor fabricated by electrodeposition can eliminate the multistep of preparation.

  • This sensor was reliable and triumphantly applied to quantify IL-6 in human serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Singer M et al (2016) The third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315(8):801–810

    CAS  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization (2017) Improving the prevention, diagnosis and clinical management of sepsis. 1–2

  3. Arabestani MR et al (2015) Conventional, molecular methods and biomarkers molecules in detection of septicemia. Adv Biomed Res 4:120–120

    PubMed  PubMed Central  Google Scholar 

  4. Molano Franco D et al (2015) Interleukin-6 for diagnosis of sepsis in critically ill adult patients. Cochrane Database Syst Rev 2015(7):CD011811. https://doi.org/10.1002/14651858.CD011811. (eCollection 2015 Jul)

    Article  PubMed Central  Google Scholar 

  5. Hanash SM, Pitteri SJ, Faca VM (2008) Mining the plasma proteome for cancer biomarkers. Nature 452(7187):571–579

    CAS  PubMed  Google Scholar 

  6. Malhotra R et al (2010) Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal Chem 82(8):3118–3123

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lau CS et al (2021) Performance of the Roche IL-6 chemiluminescent immunoassay in patients with COVID-like respiratory symptoms. J Virol Methods 296:114224

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Scientific T (2012) ELISA technical guide. Available from: http://surl.li/fidvz

  9. Sarakhman O, Benková A, Švorc Ľ (2022) A modern and powerful electrochemical sensing platform for purines determination: voltammetric determination of uric acid and caffeine in biological samples on miniaturized thick-film boron-doped diamond electrode. Microchem J 175:107132

    CAS  Google Scholar 

  10. Aydın EB, Aydın M, Sezgintürk MK (2021) A novel electrochemical immunosensor based on acetylene black/epoxy-substituted-polypyrrole polymer composite for the highly sensitive and selective detection of interleukin 6. Talanta 222:121596

    PubMed  Google Scholar 

  11. Chandra Barman S et al (2021) A highly selective and stable cationic polyelectrolyte encapsulated black phosphorene based impedimetric immunosensor for Interleukin-6 biomarker detection. Biosens Bioelectron 186:113287

    CAS  PubMed  Google Scholar 

  12. Liu Z et al (2021) Nanoparticle-assisted sacrificial synthesis of hierarchical porous carbon composite for rapid sample enrichment and ultrasensitive label-free immunosensing of interleukin-6 biomarker. J Electroanal Chem 883:115068

    CAS  Google Scholar 

  13. Zhang J et al (2021) DNAzyme concatamer-catalyzed precipitation on an interdigitated micro-comb electrode for capacitance immunosensing of interleukin-6 with rolling circle amplification. New J Chem 45:915–922

    CAS  Google Scholar 

  14. Atar N, Yola ML (2021) A novel QCM immunosensor development based on gold nanoparticles functionalized sulfur-doped graphene quantum dot and h-ZnS-CdS NC for Interleukin-6 detection. Anal Chim Acta 1148:338202

    CAS  PubMed  Google Scholar 

  15. Zhang J-J et al (2011) “Proof-of-principle” concept for ultrasensitive detection of cytokines based on the electrically heated carbon paste electrode. Chem Commun 47(23):6551–6553

    CAS  Google Scholar 

  16. Akazawa-Ogawa Y, Nagai H, Hagihara Y (2018) Heat denaturation of the antibody, a multi-domain protein. Biophys Rev 10(2):255–258

    CAS  PubMed  Google Scholar 

  17. Crapnell RD et al (2021) Toward the rapid diagnosis of sepsis: detecting interleukin-6 in blood plasma using functionalized screen-printed electrodes with a thermal detection methodology. Anal Chem 93(14):5931–5938

    CAS  PubMed  Google Scholar 

  18. McClements J et al (2021) Immobilization of molecularly imprinted polymer nanoparticles onto surfaces using different strategies: evaluating the influence of the functionalized interface on the performance of a thermal assay for the detection of the cardiac biomarker troponin I. ACS Appl Mater Interfaces 13(24):27868–27879

    CAS  PubMed  Google Scholar 

  19. McClements J et al (2022) Molecularly imprinted polymer nanoparticles enable rapid, reliable, and robust point-of-care thermal detection of SARS-CoV-2. ACS Sensors 7(4):1122–1131

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mahouche-Chergui S et al (2011) Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem Soc Rev 40(7):4143–4166

    CAS  PubMed  Google Scholar 

  21. Liang H et al (2021) Carbon fiber microelectrode array loaded with the diazonium salt-single-walled carbon nanotubes composites for the simultaneous monitoring of dopamine and serotonin in vivo. Anal Chim Acta 1186:339086

    CAS  PubMed  Google Scholar 

  22. Yuliandari P, Wibowo R, Nurani DA (2021) Para-carboxyphenyl diazonium - modified carbon paste electrode for analysis Cu (II) in water. AIP Conf Proc 2349(1):020002

    CAS  Google Scholar 

  23. Rabai S et al (2021) Development of a label-free electrochemical aptasensor based on diazonium electrodeposition: application to cadmium detection in water. Anal Biochem 612:113956

    CAS  PubMed  Google Scholar 

  24. Yunus MH et al (2021) A novel amperometric aptamer–antibody sandwich assay for the detection of tuberculosis with diazonium electrografted enhanced modified electrode. IEEE Sens J 21:22442–22449

    CAS  Google Scholar 

  25. Yang Y et al (2019) A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale 11(2):725–732

    CAS  PubMed  Google Scholar 

  26. Luo J et al (2012) Facile one-step electrochemical fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified with copper nanoparticles and graphene. Microchim Acta 177:485–490

    CAS  Google Scholar 

  27. Jesadabundit W et al (2021) Enzyme-free impedimetric biosensor-based molecularly imprinted polymer for selective determination of L-hydroxyproline. Biosens Bioelectron 191:113387

    CAS  PubMed  Google Scholar 

  28. Eissa S et al (2018) Electrochemical immunosensors for the detection of survival motor neuron (SMN) protein using different carbon nanomaterials-modified electrodes. Biosens Bioelectron 101:282–289

    CAS  PubMed  Google Scholar 

  29. Ruecha N et al (2019) Label-free paper-based electrochemical impedance immunosensor for human interferon gamma detection. Sens Actuators, B Chem 279:298–304

    CAS  Google Scholar 

  30. Shao W, Zangari G (2009) Dendritic growth and morphology selection in copper electrodeposition from acidic sulfate solutions containing chlorides. J Phys Chem C 113(23):10097–10102

    CAS  Google Scholar 

  31. Zhang D et al (2013) Direct electrodeposion of reduced graphene oxide and dendritic copper nanoclusters on glassy carbon electrode for electrochemical detection of nitrite. Electrochim Acta 107:656–663

    CAS  Google Scholar 

  32. Mooste M et al (2018) Surface and electrochemical characterization of aryl films grafted on polycrystalline copper from the diazonium compounds using the rotating disk electrode method. J Electroanal Chem 817:89–100

    CAS  Google Scholar 

  33. Essousi H et al (2019) Ion-imprinted electrochemical sensor based on copper nanoparticles-polyaniline matrix for nitrate detection. J Sens 2019:4257125

    Google Scholar 

  34. Magar HS, Hassan RYA, Mulchandani A (2021) electrochemical impedance spectroscopy (EIS): principles, construction, and biosensing applications. Sensors 21(19):6578

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang D et al (2014) Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles. Microchim Acta 181:1199–1206

    CAS  Google Scholar 

  36. Zhu M et al (2020) Copper nanoparticles incorporating a cationic surfactant-graphene modified carbon paste electrode for the simultaneous determination of gatifloxacin and pefloxacin. J Electroanal Chem 857:113730

    CAS  Google Scholar 

  37. diagnostics R (2019) Matching all aspects of the ISO15197:2013 performance requirements for blood glucose monitoring systems. Available from: https://www.accu-chek.lk/more-topics/matching-all-aspects-iso-151972013-performance-requirements-blood-glucose-monitoring

  38. Aydın EB (2020) Highly sensitive impedimetric immunosensor for determination of interleukin 6 as a cancer biomarker by using conjugated polymer containing epoxy side groups modified disposable ITO electrode. Talanta 215:120909

    PubMed  Google Scholar 

  39. Cao L et al (2020) NiCoO2@CeO2 nanoboxes for ultrasensitive electrochemical immunosensing based on the oxygen evolution reaction in a neutral medium: application for interleukin-6 detection. Anal Chem 92(24):16267–16273

    CAS  PubMed  Google Scholar 

  40. Wang Z et al (2020) A novel oriented immunosensor based on AuNPs-thionine-CMWCNTs and staphylococcal protein A for interleukin-6 analysis in complicated biological samples. Anal Chim Acta 1140:145–152

    CAS  PubMed  Google Scholar 

  41. Zhang C et al (2022) Microfluidic electrochemical magnetoimmunosensor for ultrasensitive detection of interleukin-6 based on hybrid of AuNPs and graphene. Talanta 240:123173

    CAS  PubMed  Google Scholar 

  42. Tan PS et al (2021) Laser scribing fabrication of graphitic carbon biosensors for label-free detection of interleukin-6. Nanomaterials 11(8):2110

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang J et al (2021) DNAzyme concatemer-catalyzed precipitation on an interdigitated micro-comb electrode for capacitance immunosensing of interleukin-6 with rolling circle amplification. New J Chem 45(2):915–922

    CAS  Google Scholar 

  44. Chen N et al (2021) An interdigitated aptasensor to detect interleukin-6 for diagnosing rheumatoid arthritis in serum. Biotechnol Appl Biochem 68(6):1479–1485

    CAS  PubMed  Google Scholar 

  45. Oh C et al (2021) Electrochemical immunosensing of interleukin-6 in human cerebrospinal fluid and human serum as an early biomarker for traumatic brain injury. ACS Measurement Sci Au 1(2):65–73

    CAS  Google Scholar 

  46. Russell C et al (2019) Development of a needle shaped microelectrode for electrochemical detection of the sepsis biomarker interleukin-6 (IL-6) in real time. Biosens Bioelectron 126:806–814

    CAS  PubMed  Google Scholar 

  47. Cancelliere R et al (2022) Cost-effective and disposable label-free voltammetric immunosensor for sensitive detection of interleukin-6. Biosens Bioelectron 213:114467

    CAS  PubMed  Google Scholar 

  48. Madhu S et al (2023) Sensitive electrochemical sensing platform based on Au nanoflower-integrated carbon fiber for detecting interleukin-6 in human serum. Anal Chim Acta 1238:340644

    CAS  PubMed  Google Scholar 

  49. Rafat C et al (2013) Bilirubin-associated acute tubular necrosis in a kidney transplant recipient. Am J Kidney Dis 61(5):782–785

    CAS  PubMed  Google Scholar 

  50. Zafar Gondal A, Foris LA, Richards JR (2022) Serum myoglobin, in StatPearls. StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC., Treasure Island (FL), 29262167

  51. Pupim LB, Martin CJ, Ikizler TA (2013) Chapter 10- assessment of protein and energy nutritional status. In: Kopple JD, Massry SG, Kalantar-Zadeh K (eds) Nutritional management of renal disease, 3rd edn. Academic Press, pp 137–158

    Google Scholar 

  52. Di Angelantonio E et al (2005) Prognostic significance of admission levels of troponin I in patients with acute ischaemic stroke. J Neurol Neurosurg Psychiatry 76(1):76–81

    PubMed  Google Scholar 

  53. Ball D, Rose E, Alpert E (1992) Alpha-fetoprotein levels in normal adults. Am J Med Sci 303(3):157–159

    CAS  PubMed  Google Scholar 

  54. Ma H, Ó’Fágáin C, O’Kennedy R (2020) Antibody stability: a key to performance - analysis, influences and improvement. Biochimie 177:213–225

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

O.C. would like to express sincere appreciation to the National Research Council of Thailand (NRCT) (Grant No. N41A640073) for their invaluable financial support. W.J. extends gratitude to the Science Achievement Scholarship of Thailand (SAST) for providing the opportunity for overseas research experience. Additionally, we would like to convey our deep gratitude to C.B. and R.C. for their exceptional assistance in facilitating our research endeavors in the UK.

Author information

Authors and Affiliations

Authors

Contributions

Whitchuta Jesadabundit: conceptualization, investigation, writing—original draft. Sakda Jampasa: supervision, review and editing. Robert D. Crapnell: supervision, review and editing. Nina C. Dempsey: supervision, methodology. Craig E. Banks: visualization, supervision. Weena Siangproh: visualization, supervision. Orawon Chailapakul: visualization, project administration, supervision.

Corresponding authors

Correspondence to Weena Siangproh or Orawon Chailapakul.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1098 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jesadabundit, W., Jampasa, S., Crapnell, R.D. et al. Toward the rapid diagnosis of sepsis: dendritic copper nanostructure functionalized diazonium salt modified screen-printed graphene electrode for IL-6 detection. Microchim Acta 190, 362 (2023). https://doi.org/10.1007/s00604-023-05939-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05939-0

Keywords

Navigation