Skip to main content
Log in

Sensitive photoelectrochemical detection of colitoxin DNA based on NCDs@CuO/ZnO heterostructured nanocomposites with efficient separation capacity of photo-induced carriers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A metal–organic framework (MOF) of Cu-TPA (terephthalic acid) microsphere was prepared, followed by calcinating the MOF precursor of Cu-TPA/ZIF-8 mixture to obtain the CuO/ZnO. N-doped carbon dots (NCDs) were employed to combine the CuO/ZnO composite to form a tripartite heterostructured architecture of NCDs@CuO/ZnO, which led to a fierce enlargement of the photocurrent response. This  was ascribed to the thinner-shell structure of the CuO microsphere and the fact that hollow ZnO particles could sharply promote the incidence intensity of visible light. The more porous defectiveness exposed on CuO/ZnO surface was in favor of rapidly infiltrating electrolyte ions. The p-n type CuO/ZnO composite with more contact interface could abridge the transfer distance of photo-induced electron (e−1)/hole (h+) pairs and repress their recombination availably. NCDs not only could boost electron transfer rate on the electrode interface but also successfully sensitized the CuO/ZnO composite, which resulted in high conversion efficiency of photon-to-electron. The probe DNA (S1) was firmly assembled on the modified ITO electrode surface (S1/NCDs@CuO/ZnO) through an amidation reaction. Under optimal conditions, the prepared DNA biosensor displayed a wide linear range of 1.0 × 10−6 ~ 7.5 × 10−1 nM and a low limit of detection (LOD) of 1.81 × 10−7 nM for colitoxin DNA (S2) measure, which exhibited a better photoelectrochemistry (PEC) analysis performance than that obtained by differential pulse voltammetry techniques. The relative standard deviation (RSD) of the sensing platform for target DNA detection of 5.0 × 10−2 nM was 6.3%. This proposed DNA biosensor also showed good selectivity, stability, and reproducibility, demonstrating that the well-designed and synthesized photoactive materials of NCDs@CuO/ZnO are promising candidates for PEC analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  1. Chang J, Lv W, Li Q, Li H, Li F (2020) One-step synthesis of methylene blue-encapsulated ZIF for dual-signal fluorescent and homogeneous electrochemical biosensing. Anal Chem 92:8959–8964. https://doi.org/10.1021/acs.analchem.0c00952

    Article  CAS  PubMed  Google Scholar 

  2. Chang J, Lv W, Wu J, Li H, Li F (2021) Simultaneous photoelectrochemical detection of dual microRNAs by capturing CdS quantum dots and methylene blue based on target-initiated strand displaced amplification. Chin Chem Lett 32:775–778. https://doi.org/10.1016/j.cclet.2020.05.041

    Article  CAS  Google Scholar 

  3. Qian Z, Bai H, Wang G, Xu J, Chen H (2010) A photoelectrochemical sensor based on CdS-polyamidoamine nano-composite film for cell capture and detection. Biosens Bioelectron 25:2045–2050. https://doi.org/10.1016/j.bios.2010.01.036

    Article  CAS  PubMed  Google Scholar 

  4. Long D, Li M, Wang H, Chai Y, Li Z, Yuan R (2020) Ultra-sensitive photoelectrochemical assay for DNA detection based on a novel SnS2/Co3O4 sensitized structure. Anal Chem 92:14769–14774. https://doi.org/10.1021/acs.analchem.0c03497

    Article  CAS  PubMed  Google Scholar 

  5. Chen F, Han D, Chen H (2020) Liposome-assisted enzymatic modulation of plasmonic photoelectrochemistry for immunoassay. Anal Chem 92:8450–8458. https://doi.org/10.1021/acs.analchem.0c01162

    Article  CAS  PubMed  Google Scholar 

  6. Guo J, Liu D, Yang Z, Weng W, Chan E, Zeng Z, Wong K, Lin P, Chen S (2020) A photoelectrochemical biosensor for rapid and ultrasensitive norovirus detection. Bioelectrochemistry 136:107591. https://doi.org/10.1016/j.bioelechem.2020.107591

    Article  CAS  PubMed  Google Scholar 

  7. Yu X, Wang Y, Chen X, Wu K, Chen D, Ma M, Huang Z, Wu W, Li C (2015) White-light-exciting, layer-by-layer-assembled ZnCdHgSe quantum dots/polymerized ionic liquid hybrid film for highly sensitive photoelectrochemical immunosensing of neuron specific enolase. Anal Chem 87:4237–4244. https://doi.org/10.1021/ac504456w

    Article  CAS  PubMed  Google Scholar 

  8. Li F, Zhou Y, Wang S, Yin H, Chen Y, Luo H, Ai S (2020) One step preparation of CN-WS2 nanocomposite with enhanced photoactivity and its application for photoelectrochemical detection of 5-formylcytosine in the genomic DNA of maize seedling. Biosens Bioelectron 151:111973. https://doi.org/10.1016/j.bios.2019.111973

    Article  CAS  PubMed  Google Scholar 

  9. Zheng D, Chen M, Peng J, Jiayang Chen J, Chen T, Chen Y, Huang L, Gao W (2021) An enhanced photoelectrochemical biosensor for colitoxin DNA based on HKUST-1/TiO2 and derived HKUST-CuO/TiO2 heterogeneous composites. Microchim Acta 188(10):328–338. https://doi.org/10.1007/s00604-021-04999-4

    Article  CAS  Google Scholar 

  10. Wu F, Yu Y, Yang H, German L, Li Z, Chen J, Yang W, Huang L, Shi W, Wang L, Wang X (2017) Simultaneous enhancement of charge separation and hole transportation in a TiO2–SrTiO3 core–shell nanowire photoelectrochemical system. Adv Mater 29:1701432. https://doi.org/10.1002/adma.201701432

    Article  CAS  Google Scholar 

  11. Li C, He J, Xiao Y, Li Y, Delaunay J-J (2020) Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting, Energy Environ. Sci 13:3269–3306. https://doi.org/10.1039/D0EE02397C

    Article  CAS  Google Scholar 

  12. Yang C, Wu Q, Jiang Z, Wang X, Huang C, Li Y (2021) Cu vacancies enhanced photoelectrochemical activity of metal-organic gel-derived CuO for the detection of L-cysteine. Talanta 228:122261–122268. https://doi.org/10.1016/j.talanta.2021.122261

    Article  CAS  PubMed  Google Scholar 

  13. Shao M, Ning F, Wei M, Evans D, Duan X (2014) Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv Funct Mater 24:580–586. https://doi.org/10.1002/adfm.201301889

    Article  CAS  Google Scholar 

  14. Bondarenko E, Streltsov E, Malashchonak M, Mazanik A, Kulak A, Skorb E (2017) Giant incident photon-to-current conversion with photoconductivity gain on nanostructured bismuth oxysulfide photoelectrodes under visible-light illumination. Adv Mater 29:1702387. https://doi.org/10.1002/adma.201770287

    Article  Google Scholar 

  15. Qiu B, Zhu Q, Du M, Fan L, Xing M, Zhang J (2017) Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-Scheme photocatalytic water splitting. Angew Chem Int Ed 56:2684–2688. https://doi.org/10.1002/anie.201612551

    Article  CAS  Google Scholar 

  16. Septina W, Prabhakar R, Wick R, Moehl T, Tilley SD (2017) Stabilized solar hydrogen production with CuO/CdS heterojunction thin film photocathodes. Chem Mater 29:1735–1743. https://doi.org/10.1021/acs.chemmater.6b05248

    Article  CAS  Google Scholar 

  17. Trang T, Phan T, Nam N, Thu V (2020) In situ charge transfer at the Ag@ZnO photoelectrochemical interface toward the high photocatalytic performance of H2 evolution and RhB degradation. ACS Appl Mater Interfaces 12:12195–12206. https://doi.org/10.1021/acsami.9b15578

    Article  CAS  PubMed  Google Scholar 

  18. Petrella A, Cozzoli PD, Curri ML, Striccoli M, Cosma P, Agostiano A (2004) Photoelectrochemical study on photosynthetic pigments-sensitized nanocrystalline ZnO films. Bioelectrochem 63:99–102. https://doi.org/10.1016/j.bioelechem.2003.09.016

    Article  CAS  Google Scholar 

  19. Low JX, Yu JG, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Heterojunction photocatalysts. Adv Mater 29:1601694. https://doi.org/10.1002/adma.201601694

    Article  CAS  Google Scholar 

  20. Bhat S, Pawar S, Potphode D, Moon C, Suh J, Kim C, Choi S, Patil D, Kim J, Shin J, Jang H (2019) Substantially enhanced photoelectrochemical performance of TiO2 nanorods/CdS nanocrystals heterojunction photoanode decorated with MoS2 nanosheets. Appl Catal B Environ 259:118102. https://doi.org/10.1016/j.apcatb.2019.118102

    Article  CAS  Google Scholar 

  21. Kment S, Riboni F, Pausova S, Wang L, Wang L, Han H, Hubicka Z, Krysa J, Schmuki P, Zboril R (2017) Photoanodes based on TiO2 and a-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chem Soc Rev 46:3716–3769. https://doi.org/10.1039/C6CS00015K

    Article  CAS  PubMed  Google Scholar 

  22. Peng H, Raya J, Richard F, Baaziz W, Ersen O, Ciesielski A, Samori P (2020) Synthesis of robust MOFs@COFs porous hybrid materials via an aza-diels-alder reaction: towards high-performance supercapacitor materials. Angew Chem Int Ed 59:19602–19609. https://doi.org/10.1002/ange.202008408

    Article  CAS  Google Scholar 

  23. Dhakshinamoorthy A, Li Z, Garcia H (2018) Catalysis and photocatalysis by metal organic frameworks. Chem Soc Rev 47:8134–8172. https://doi.org/10.1039/C8CS00256H

    Article  CAS  PubMed  Google Scholar 

  24. Ding Y, Zhang X, Peng J, Zheng D, Zhang X, Song Y, Chen Y, Gao W (2020) Ultra-sensitive electrochemiluminescence platform based on magnetic metal-organic framework for the highly efficient enrichment. Sens Actuators B Chem 324:128700. https://doi.org/10.1016/j.snb.2020.128700

    Article  CAS  Google Scholar 

  25. Huang G, Li Q, Yin D, Wang L (2017) Hierarchical porous Te@ZnCo2O4 nanofibers derived from Te@metal-organic frameworks for superior lithium storage capability. Adv Funct Mater 27:1604941. https://doi.org/10.1002/adfm.201604941

    Article  CAS  Google Scholar 

  26. Guo Y, Tang J, Qian H, Wang Z, Yamauchi Y (2017) One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts. Chem Mater 29:5566–5573. https://doi.org/10.1021/acs.chemmater.7b00867

    Article  CAS  Google Scholar 

  27. Tang R, Zhou S, Li H, Chen R, Zhang L, Yin L (2020) Halogen bonding induced aqueously stable CsPbBr 3@MOFs-derived Co3O4/N-doped-C heterostructure for high-performance photoelectrochemical water oxidation. Appl Catal B Environ 265:118583. https://doi.org/10.1016/j.apcatb.2019.118583

    Article  CAS  Google Scholar 

  28. Zhao X, Feng J, Liu J, Lu J, Shi W, Yang G, Wang G, Feng P, Cheng P (2018) Metal-organic framework-derived ZnO/ZnS heteronanostructures for efficient visible-light-driven photocatalytic hydrogen production. Adv Sci 5:1700590. https://doi.org/10.1002/advs.201700590

    Article  CAS  Google Scholar 

  29. Wang Q, Gao F, Xu B, Cai F, Zhan F, Gao F, Wang Q (2017) ZIF-67 derived amorphous CoNi2S4 nanocages with nanosheet arrays on the shell for a high-performance asymmetric supercapacitor. Chem Eng J 327:387–396. https://doi.org/10.1016/j.cej.2017.06.124

    Article  CAS  Google Scholar 

  30. Hu X, Li C, Lou X, Yang Q, Hu B (2017) Hierarchical CuO octahedra inherited from copper metal-organic frameworks: high-rate and high-capacity lithium-ion storage materials stimulated by pseudocapacitance. J Mater Chem A 5:12828–12837. https://doi.org/10.1039/C7TA02953E

    Article  CAS  Google Scholar 

  31. Zhang Y, Qiu L, Yuan Y, Zhu Y, Jiang X, Xiao J (2014) Magnetic Fe3O4@C/Cu and Fe3O4@CuO core-shell composites constructed from MOF-based materials and their photocatalytic properties under visible light. Appl Catal B Environ 144:863–869. https://doi.org/10.1016/j.apcatb.2013.08.019

    Article  CAS  Google Scholar 

  32. Zhang X, Peng J, Ding Y, Zheng D, Lin Y, Chen Y, Gao W (2020) Rationally designed hierarchical hollow ZnCdS@MoS2 heterostructured cages with efficient separation of photogenerated carriers for photoelectrochemical aptasensing of lincomycin. Sens Actuators B Chem 306:127552. https://doi.org/10.1016/j.snb.2019.127552

    Article  CAS  Google Scholar 

  33. Xu R, Gu Y, Ploehn H, Gearheart L, Raker K, Scrivens W (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737. https://doi.org/10.1021/ja040082h

    Article  CAS  PubMed  Google Scholar 

  34. Lv W, Wang X, Wu J, Li H, Li F (2019) pH and H2O2 dual-responsive carbon dots for biocatalytic transformation monitoring. Chin Chem Lett 30:1635–1638. https://doi.org/10.1016/j.cclet.2019.06.029

    Article  CAS  Google Scholar 

  35. Vazquez-Gonzalez M, Liao W, Cazelles R, Wang S, Yu X, Gutkin V, Willner I (2017) Mimicking horseradish peroxidase functions using Cu2+-modified carbon nitride nanoparticles or Cu2+-modified carbon dots as heterogeneous Catalysts. ACS Nano 11:3247–3253. https://doi.org/10.1021/acsnano.7b00352

    Article  CAS  PubMed  Google Scholar 

  36. Liu C, Lu D, You X, Shi G, Deng J, Zhou T (2020) Carbon dots sensitized lanthanide infinite coordination polymer nanoparticles: towards ratiometric fluorescent sensing of cerebrospinal Abeta monomer as a biomarker for Alzheimer’s disease. Anal Chim Acta 1105:147–154. https://doi.org/10.1016/j.aca.2020.01.021

    Article  CAS  PubMed  Google Scholar 

  37. Nekoueian K, Amiri M, Sillanpää M, Marken F, Boukherroub R, Szunerits S (2019) Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chem Soc Rev 48:4281–4316. https://doi.org/10.1039/C8CS00445E

    Article  CAS  PubMed  Google Scholar 

  38. Zhang G, Ji Q, Wu Z, Wang G, Liu H, Qu J, Li J (2018) Facile “spot-heating” synthesis of carbon dots/carbon nitride for solar hydrogen evolution synchronously with contaminant decomposition. Adv Funct Mater 28:1706462. https://doi.org/10.1002/adfm.201706462

    Article  CAS  Google Scholar 

  39. Shi R, Li Z, Yu H, Shang L, Zhou C, Waterhouse G, Wu L, Zhang T (2017) Effect of nitrogen doping level on the performance of N-doped carbon quantum dot/TiO2 composites for photocatalytic hydrogen evolution. Chemsuschem 10:4650–4656. https://doi.org/10.1002/cssc.201700943

    Article  CAS  PubMed  Google Scholar 

  40. Cheng W, Zheng Z, Yang J, Chen M, Yao Q, Chen Y, Gao W (2019) The visible light-driven and self-powered photoelectrochemical biosensor for organophosphate pesticides detection based on nitrogen doped carbon quantum dots for the signal amplification. Electrochim Acta 296:627–636. https://doi.org/10.1016/j.electacta.2018.11.086

    Article  CAS  Google Scholar 

  41. Wang X, Wang Q, Wang Q, Gao F, Gao F, Yang Y, Guo H (2014) Highly dispersible and stable copper terephthalate metal-organic framework-graphene oxide nanocomposite for an electrochemical sensing application. ACS Appl Mater Interfaces 6:11573–11580. https://doi.org/10.1021/am5019918

    Article  CAS  PubMed  Google Scholar 

  42. Li Z, Yu H, Bian T, Zhao Y, Zhou C, Shang L, Liu Y, Wu LZ, Tung CH, Zhang T (2015) Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions. J Mater Chem C 3:1922–1928. https://doi.org/10.1039/C4TC02756F

    Article  CAS  Google Scholar 

  43. Carson CG, Hardcastle K, Schwartz J, Liu X, Hoffmann C, Gerhardt RA, Tannenbaum R (2009) Synthesis and structure characterization of copper terephthalate metal-organic frameworks. Eur J Inorg Chem 2009:2338–2343. https://doi.org/10.1002/ejic.200801224

    Article  CAS  Google Scholar 

  44. Dong S, Li C, Ge X, Li Z, Miao X, Yin L (2017) ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano 11:6474–6482. https://doi.org/10.1021/acsnano.7b03321

    Article  CAS  PubMed  Google Scholar 

  45. Huang Q, Lin X, Zhu J, Tong Q (2017) Pd-Au@carbon dots nanocomposite: Facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum. Biosens Bioelectron 94:507–512. https://doi.org/10.1016/j.bios.2017.03.048

    Article  CAS  PubMed  Google Scholar 

  46. Cots A, Bonete P, Gomez R (2018) Improving the stability and efficiency of CuO photocathodes for solar hydrogen production through modification with Iron. ACS Appl Mater Interfaces 10:26348–26356. https://doi.org/10.1021/acsami.8b09892

    Article  CAS  PubMed  Google Scholar 

  47. Jeong K, Deshmukh PR, Park J, Sohn Y, Shin WG (2018) ZnO-TiO2 core–shell nanowires: a sustainable photoanode for enhanced photoelectrochemical water splitting, ACS Sustainable Chem. Eng 6:6518–6526. https://doi.org/10.1021/acssuschemeng.8b00324

    Article  CAS  Google Scholar 

  48. Kwiatkowski M, Bezverkhyy I, Skompska M (2015) ZnO nanorods covered with TiO2 layer: simple sol-gel preparation, optical, photocatalytic and photoelectrochemical properties. J Mater Chem A 3:12748–12760. https://doi.org/10.1039/C5TA01087J

    Article  CAS  Google Scholar 

  49. Han H, Karlicky F, Pitchaimuthu S, Shin S, Chen A (2019) Highly ordered N-doped carbon dots photosensitizer on Metal-Organic Framework-decorated ZnO nanotubes for improved photoelectrochemical water splitting. Small 15:1902771. https://doi.org/10.1002/smll.201902771

    Article  CAS  Google Scholar 

  50. Jiang C, Moniz S, Wang A, Zhang T, Tang J (2017) Photoelectrochemical devices for solar water splitting-materials and challenges. Chem Soc Rev 46:4645–4660. https://doi.org/10.1039/c6cs00306k

    Article  CAS  PubMed  Google Scholar 

  51. Zhang X, Zhang R, Yang A, Qin Wang Q, Kong R, Qu F (2017) Aptamer based photoelectrochemical determination of tetracycline using a spindle-like ZnO-CdS@Au nanocomposite. Mikrochim Acta 184(11):4367–4374. https://doi.org/10.1007/s00604-017-2477-8

    Article  CAS  Google Scholar 

  52. Zhuge W, Li X, Feng S, S, (2020) Visible-light photoelectrochemical sensor for glutathione based on CoFe2O4-nanosphere-sensitized copper tetraaminophthalocyanine–graphene oxide. Microchem J 155:104726–104732. https://doi.org/10.1016/j.microc.2020.104726

    Article  CAS  Google Scholar 

  53. Kamimura J, Bogdanoff P, Ramsteiner M, Corfdir P, Feix F, Geelhaar L, Riechert H (2017) P-type doping of GaN nanowires characterized by photoelectrochemical measurements. Nano Lett 17:1529–1537. https://doi.org/10.1021/acs.nanolett.6b04560

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515010618), the Guangdong Special Funds for the Science & Technology Project (No. 2019ST029 & No. 2019ST089), 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (Project Number 2020LKSFG06C), and Shantou Polytechnic Supported Project (No. 2019SZK2019Y01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Gao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10346 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, D., Yang, J., Zheng, Z. et al. Sensitive photoelectrochemical detection of colitoxin DNA based on NCDs@CuO/ZnO heterostructured nanocomposites with efficient separation capacity of photo-induced carriers. Microchim Acta 189, 166 (2022). https://doi.org/10.1007/s00604-022-05280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05280-y

Keywords

Navigation