Skip to main content
Log in

Immunofluorescent-aggregation assay based on anti-Salmonella typhimurium IgG-AuNCs, for rapid detection of Salmonella typhimurium

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Sensitive and rapid detection of pathogenic bacteria plays an important role in avoiding food poisoning. However, the practical application value of conventional assays for detection of foodborne bacteria, are limited by major drawbacks; these include the laboriousness of pure culture preparation, complexity of DNA extraction for polymerase chain reaction, and low sensitivity of enzyme-linked immunosorbent assay. Herein, we designed a non-complex strategy for the sensitive, quantitative, and rapid detection of Salmonella typhimurium with high specificity, using an anti-Salmonella typhimurium IgG-AuNC-based immunofluorescent-aggregation assay. Salmonella typhimurium was agglutinated with fluorescent anti-Salmonella typhimurium IgG-AuNC on a glass slide, and observed using a fluorescence microscope with photoexcitation and photoemission at 560 nm and 620 nm, respectively. Under optimized reaction conditions, the AuNC-based immunofluorescent-aggregation assay had a determination range between 7.0 × 103 and 3.0 × 108 CFU/mL, a limit of detection of 1.0 × 103 CFU/mL and an assay response time of 3 min. The technique delivered good results in assessing real samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mangal M, Bansal S, Sharma SK, Gupta RK (2016) Molecular detection of foodborne pathogens: a rapid and accurate answer to food safety. Crit Rev Food Sci Nutr 56:1568–1584

    Article  CAS  Google Scholar 

  2. Wu WH, Li J, Pan D, Li J, Song SP, Rong MG, Li ZX, Gao JM, Lu JX (2014) Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of Salmonella typhimurium. ACS Appl Mater Interfaces 6(19):16974–16981

    Article  CAS  Google Scholar 

  3. Kawasaki S, Fratamico PM, Horikoshi N, Okada Y, Takeshita K, Sameshima T, Kawamoto S (2010) Multiplex real-time polymerase chain reaction assay for simultaneous detection and quantification of Salmonella species, Listeria monocytogenes, and Escherichia coli O157:H7 in ground pork samples. Foodborne Pathog Dis 7(5):549–554

    Article  CAS  Google Scholar 

  4. Singh A, Arya SK, Glass N, Hanifi-Moghaddam P, Naidoo R, Szymanski CM, Tanha J, Evoy S (2011) Bacteriophage tailspike proteins as molecular probes for sensitive and selective bacterial detection. Biosens Bioelectron 26(1):131–138

    Article  Google Scholar 

  5. Zelada-Guillén GA, Riu J, Düzgün A, Rius FX (2010) Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor. Angew Chem Int Ed 48(40):7334–7337

    Article  Google Scholar 

  6. Sannigrahi S, Shiva Kumar A, Jayaraman M, Suthindhiran K (2020) Magnetosome-anti-Salmonella antibody complex based biosensor for the detection of Salmonella typhimurium. Mater Sci Eng C 114:111071

    Article  CAS  Google Scholar 

  7. Kulagina NV, Shaffer KM, Anderson GP, Ligler FS, Taitt CR (2006) Antimicrobial peptide-based array for Escherichia coli and Salmonella screening. Anal Chim Acta 575:9–15

    Article  CAS  Google Scholar 

  8. Zhang QF, Savagatrup S, Kaplonek P, Seeberger PH, Swager TM (2017) Janus emulsions for the detection of bacteria. ACS Cent Sci 3(4):309–313

    Article  CAS  Google Scholar 

  9. Avila-Huerta MD, Ortiz-Riaño EJ, Mancera-Zapata DL, Morales-Narváez E (2020) Real-time photoluminescent biosensing based on graphene oxide-coated microplates: a rapid pathogen detection platform. Anal Chem 92(17):11511–11515

    Article  CAS  Google Scholar 

  10. Yu GC, Ma YJ, Han CY, Yao Y, Tang GP, Mao ZW, Gao CY, Huang FH (2013) A sugar-functionalized amphiphilic pillar[5]arene: synthesis, self-assembly in water, and application in bacterial cell agglutination. J Am Chem Soc 135(28):10310–10313

    Article  CAS  Google Scholar 

  11. Zhuang QQ, Deng HH, He SB, Peng HP, Lin Z, Xia XH, Chen W (2019) Immunoglobulin G-encapsulated gold nanoclusters as fluorescent tags for dot-blot immunoassays. ACS Appl Mater Interfaces 11(35):31729–31734

    Article  CAS  Google Scholar 

  12. Wen CY, Hu J, Zhang ZL, Tian ZQ, Ou GP, Liao YL, Li Y, Xie M, Sun ZY, Pang DW (2013) One-step sensitive detection of Salmonella typhimurium by coupling magnetic capture and fluorescence identification with functional nanospheres. Anal Chem 85(2):1223–1230

    Article  CAS  Google Scholar 

  13. Shang L, Dong SJ, Nienhaus GU (2011) Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6:401–418

    Article  CAS  Google Scholar 

  14. Retnakumari A, Setua S, Menon D, Ravindran P, Muhammed H, Pradeep T, Nair S, Koyakutty M (2010) Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology 21:055103

    Article  Google Scholar 

  15. Zhou RJ, Shi MM, Chen XQ, Wang M, Chen HZ (2009) Atomically-monodispersed and fluorescent subnanometer-sized gold clusters created by biomolecules-assisted etching of nanometer-sized gold particles and rods. Chem Eur J 15:4944–4951

    Article  CAS  Google Scholar 

  16. Ji HW, Wu L, Pu F, Ren JS, Qu XG (2018) Point-of-care identification of bacteria using protein-encapsulated gold nanoclusters. Adv Healthcare Mater 7(13):1701370

    Article  Google Scholar 

  17. Chan PH, Chen YC (2012) Human serum albumin stabilized gold nanoclusters as selective luminescent probes for Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus. Anal Chem 84(21):8952–8956

    Article  CAS  Google Scholar 

  18. Ding H, Li HW, Wang XL, Zhou YF, Li ZH, Hiltunen JK, Shen JC, Chen ZJ (2017) Expanding toolbox of imageable protein-gold hybrid materials. Chem Mater 29:8440–8448

    Article  CAS  Google Scholar 

  19. Ding H, Chen ZJ (2021) Nanotheranostic application of fluorescent protein-gold nanocluster hybrid materials: a mini-review. Nanotheranostics 5(4):461–471

    Article  Google Scholar 

  20. West AL, Griep MH, Cole DP, Karna SP (2014) DNase 1 retains endodeoxyribonuclease activity following gold nanocluster synthesis. Anal Chem 86:7377–7382

    Article  CAS  Google Scholar 

  21. Wen F, Dong YH, Feng L, Wang S, Zhang SC, Zhang XR (2011) Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem 83:1193–1196

    Article  CAS  Google Scholar 

  22. Qu KZ, Xu J, Xue YF, Guo JL, Gao ZD, Song YY, Mei Y (2022) Near infrared light-driven photothermal effect on homochiral Au/TiO2 nanotube arrays for enantioselective desorption. Anal Chem 94(2):588–592

    Article  CAS  Google Scholar 

  23. Louvet JN, Attik G, Dumas D, Potier O, Pons MN (2011) Simultaneous Gram and viability staining on activated sludge exposed to erythromycin: 3D CLSM time-lapse imaging of bacterial disintegration. Int J Hyg Environ Health 214(6):470–477

    Article  CAS  Google Scholar 

  24. Zheng LY, Cai GZ, Qi WZ, Wang SY, Wang MH, Lin JH (2020) Optical biosensor for rapid detection of Salmonella typhimurium based on porous Gold@Platinum nanocatalysts and a 3D fluidic chip. ACS Sens 5:65–72

    Article  CAS  Google Scholar 

  25. Shang L, Azadfar N, Stockmar F, Send W, Trouillet V, Bruns M, Gerthsen D, Nienhaus GU (2011) One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small 7(18):2614–2620

    Article  CAS  Google Scholar 

  26. Roche AM, Richard AL, Rahkola JT, Janoff EN, Weiser JN (2015) Antibody blocks acquisition of bacterial colonization through agglutination. Mucosal Immunol 8(1):176–185

    Article  CAS  Google Scholar 

  27. Chunglok W, Wuragil DK, Oaew S, Somasundrum M, Surareungchai W (2011) Immunoassay based on carbon nanotubes-enhanced ELISA for Salmonella Enterica Serovar Typhimurium. Biosens Bioelectron 26:3584–3589

    Article  CAS  Google Scholar 

  28. Chattopadhyay S, Kaur A, Jain S, Singh H (2013) Sensitive detection of food-borne pathogen Salmonella by modified PAN fibers-immunoassay. Biosens Bioelectron 45:274–280

    Article  CAS  Google Scholar 

  29. Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 309(1):1–7

    CAS  PubMed  Google Scholar 

  30. Fang HHP, Zhu HG, Zhang T (2006) Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. Int J Hydrogen Energy 31:2223–2230

    Article  CAS  Google Scholar 

  31. Chou KC, Shen HB (2008) Cell-PLoc: a package of web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 3(2):153–162

    Article  CAS  Google Scholar 

  32. Dworzanski JP, Tripathi A, Snyder AP, Maswdeh WM, Wick CH (2005) Novel biomarkers for Gram-type differentiation of bacteria by pyrolysis–gas chromatography–mass spectrometry. J Anal Appl Pyrolysis 73(1):29–38

    Article  CAS  Google Scholar 

  33. Li XM, Ding YJ, Ling J, Yao WY, Zha L, Li N, Chang YF, Wang Y, Cai JF (2019) Bacteria-targeting BSA-stabilized SiC nanoparticles as a fluorescent nanoprobe for forensic identification of saliva. Microchim Acta 186:756

    Article  CAS  Google Scholar 

  34. Cheng C, Yang L, Zhong M, Deng WF, Tan YM, Xie QJ, Yao SZ (2018) Au nanocluster-embedded chitosan nanocapsules as labels for the ultrasensitive fluorescence immunoassay of Escherichia coli O157:H7. Analyst 143:4067–4073

    Article  CAS  Google Scholar 

  35. Jin B, Wang S, Lin M, Jin Y, Zhang SJ, Cui XY, Gong Y, Li A, Xu F, Lu TJ (2017) Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosens Bioelectron 90:525–533

    Article  CAS  Google Scholar 

Download references

Funding

This study received financial support from the National Natural Science Foundation of China (21675024, 21804021), the Joint Funds for the Innovation of Science and Technology, Fujian Province (2016Y9056), the Program for Innovative Leading Talents in Fujian Province (2016B016), the Science and Technology Project of Quanzhou (2018N122S), and the Medical Elite Cultivation Program of Fujian (2020GGB049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao-Hua Deng or Wei Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1286 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, QQ., He, SB., Jiang, YC. et al. Immunofluorescent-aggregation assay based on anti-Salmonella typhimurium IgG-AuNCs, for rapid detection of Salmonella typhimurium. Microchim Acta 189, 160 (2022). https://doi.org/10.1007/s00604-022-05263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05263-z

Keywords

Navigation