Skip to main content
Log in

Multiplexed assessment of engineered bacterial constructs for intracellular β-galactosidase expression by redox amplification on catechol-chitosan modified nanoporous gold

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Synthetic biology approaches for rewiring of bacterial constructs to express particular intracellular factors upon induction with the target analyte are emerging as sensing paradigms for applications in environmental and in vivo monitoring. To aid in the design and optimization of bacterial constructs for sensing analytes, there is a need for lysis-free intracellular detection modalities that monitor the signal level and kinetics of expressed factors within different modified bacteria in a multiplexed manner, without requiring cumbersome surface immobilization. Herein, an electrochemical detection system on nanoporous gold that is electrofabricated with a biomaterial redox capacitor is presented for quantifying β-galactosidase expressed inside modified Escherichia coli constructs upon induction with dopamine. This nanostructure-mediated redox amplification approach on a microfluidic platform allows for multiplexed assessment of the expressed intracellular factors from different bacterial constructs suspended in distinct microchannels, with no need for cell lysis or immobilization. Since redox mediators present over the entire depth of the microchannel can interact with the electrode and with the E. coli construct in each channel, the platform exhibits high sensitivity and enables multiplexing. We envision its application in assessing synthetic biology-based approaches for comparing specificity, sensitivity, and signal response time upon induction with target analytes of interest.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stephanopoulos G (2012) Synthetic biology and metabolic engineering. ACS Synth Biol 1:514–525. https://doi.org/10.1021/sb300094q

    Article  CAS  PubMed  Google Scholar 

  2. Li JY, Liu Y, Kim E, March JC, Bentley WE, Payne GF (2017) Electrochemical reverse engineering: a systems-level tool to probe the redox-based molecular communication of biology. Free Radic Biol Med 105:110–131. https://doi.org/10.1016/j.freeradbiomed.2016.12.029

    Article  CAS  PubMed  Google Scholar 

  3. Honrado C, McGrath JS, Reale R, Bisegna P, Swami NS, Caselli F (2020) A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry. Anal Bioanal Chem 412:3835–3845. https://doi.org/10.1007/s00216-020-02497-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Farmehini V, Varhue W, Salahi A, Hyler AR, Čemažar J, Davalos RV, Swami NS (2020) On-chip impedance for quantifying parasitic voltages during AC electrokinetic trapping. IEEE Trans Biomed Eng 67:1664–1671. https://doi.org/10.1109/TBME.2019.2942572

    Article  PubMed  Google Scholar 

  5. Kaya T, Nagamine K, Matsui N, Yasukawa T, Shiku H, Matsue T (2004) On-chip electrochemical measurement of beta-galactosidase expression using a microbial chip. Chem Commun 2:248–249. https://doi.org/10.1039/b312462b

    Article  CAS  Google Scholar 

  6. Yagi K (2007) Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 73:1251–1258. https://doi.org/10.1007/s00253-006-0718-6

    Article  CAS  PubMed  Google Scholar 

  7. Ferapontova EE (2020) Electrochemical assays for microbial analysis: how far they are from solving microbiota and microbiome challenges. Curr Opin Electrochem 19:153–161. https://doi.org/10.1016/j.coelec.2019.12.005

    Article  CAS  Google Scholar 

  8. Ino K, Nashimoto Y, Taira N, Azcon JR, Shiku H (2018) Intracellular electrochemical sensing. Electroanalysis 30:2195–2209. https://doi.org/10.1002/elan.201800410

    Article  CAS  Google Scholar 

  9. Goluch ED (2017) Microbial identification using electrochemical detection of metabolites. Trends Biotechnol 35:1125–1128. https://doi.org/10.1016/j.tibtech.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Moore JH, Kolling GL, McGrath JS, Papin JA, Swami NS (2020) Minimum bactericidal concentration of ciprofloxacin to Pseudomonas aeruginosa determined rapidly based on pyocyanin secretion. Sens. Actuator B-Chem. 312:127936. https://doi.org/10.1016/j.snb.2020.127936

    Article  CAS  Google Scholar 

  11. Kim E, Gordonov T, Liu Y, Bentley WE, Payne GF (2013) Reverse engineering to suggest biologically relevant redox activities of phenolic materials. ACS Chem Biol 8:716–724. https://doi.org/10.1021/cb300605s

    Article  CAS  PubMed  Google Scholar 

  12. Tschirhart T, Zhou XYY, Ueda H, Tsao CY, Kim E, Payne GF, Bentley WE (2016) Electrochemical measurement of the beta-galactosidase reporter from live cells: a comparison to the Miller assay. ACS Synth Biol 5:28–35. https://doi.org/10.1021/acssynbio.5b00073

    Article  CAS  PubMed  Google Scholar 

  13. VanArsdale E, Tsao CY, Liu Y, Chen CY, Payne GF, Bentley WE (2019) Redox-based synthetic biology enables electrochemical detection of the herbicides dicamba and roundup via rewired Escherichia coli. ACS Sens. 4:1180–1184. https://doi.org/10.1021/acssensors.9b00085

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Tsao CY, Kim E, Tschirhart T, Terrell JL, Bentley WE, Payne GF (2017) Using a redox modality to connect synthetic biology to electronics: hydrogel-based chemo-electro signal transduction for molecular communication. Adv. Healthc. Mater. 6:1600908. https://doi.org/10.1002/adhm.201600908

  15. Zhou YS, Ino K, Shiku H, Matsue T (2015) Evaluation of senescence in individual MCF-7 spheroids based on electrochemical measurement of senescence-associated beta-galactosidase activity. Electrochim Acta 186:449–454. https://doi.org/10.1016/j.electacta.2015.10.115

    Article  CAS  Google Scholar 

  16. Truong NC, Bui KH, Van Pham P (2018). Characterization of senescence of human adipose-derived stem cells after long-term expansion. Tissue Eng Regen Med. 109–128. Springer, Cham. https://link.springer.com/chapter/10.1007/5584_2018_235

  17. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41. https://doi.org/10.1007/s00604-014-1308-4

    Article  CAS  Google Scholar 

  18. Hiramoto K, Ino K, Nashimoto Y, Ito K, Shiku H (2019) Electric and electrochemical microfluidic devices for cell analysis. Front Chem 7:396. https://doi.org/10.3389/fchem.2019.00396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fernandez RE, Sanghavi BJ, Farmehini V, Chávez JL, Hagen J, Kelley-Loughnane N, Chou CF, Swami NS (2016) Aptamer-functionalized graphene-gold nanocomposites for label-free detection of dielectrophoretic-enriched neuropeptide Y. Electrochem Commun 72:144–147. https://doi.org/10.1016/j.elecom.2016.09.017

    Article  CAS  Google Scholar 

  20. Kim E, Liu Z, Liu Y, Bentley WE, Payne GF (2017) Catechol-based hydrogel for chemical information processing. Biomimetics 2:11. https://doi.org/10.3390/biomimetics2030011

    Article  CAS  PubMed Central  Google Scholar 

  21. Yan K, Liu Y, Guan YG, Bhokisham N, Tsao CY, Kim E, Shi XW, Wang Q, Bentley WE, Payne GF (2018) Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis. Colloid Surf. B-Biointerfaces 169:470–477. https://doi.org/10.1016/j.colsurfb.2018.05.048

    Article  CAS  Google Scholar 

  22. Liu Y, McGrath JS, Moore JH, Kolling GL, Papin JA, Swami NS (2019) Electrofabricated biomaterial-based capacitor on nanoporous gold for enhanced redox amplification. Electrochim Acta 318:828–836. https://doi.org/10.1016/j.electacta.2019.06.127

    Article  CAS  Google Scholar 

  23. Shang W, Liu Y, Kim E, Tsao CY, Payne GF, Bentley WE (2018) Selective assembly and functionalization of miniaturized redox capacitor inside microdevices for microbial toxin and mammalian cell cytotoxicity analyses. Lab Chip 18:3578–3587. https://doi.org/10.1039/c8lc00583d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeng J, Spiro S (2013) Finely tuned regulation of the aromatic amine degradation pathway in Escherichia coli. J Bacteriol 195:5141–5150. https://doi.org/10.1128/JB.00837-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin YK, Yeh YC (2017) Dual-signal microbial biosensor for the detection of dopamine without inference from other catecholamine neurotransmitters. Anal Chem 89:11178–11182. https://doi.org/10.1021/acs.analchem.7b02498

    Article  CAS  PubMed  Google Scholar 

  26. Ceres P, Trausch JJ, Batey RT (2013) Engineering modular ‘ON’ RNA switches using biological components. Nucleic Acids Res 41:10449–10461. https://doi.org/10.1093/nar/gkt787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Strulson CA, Boyer JA, Whitman EE, Bevilacqua PC (2014) Molecular crowders and cosolutes promote folding cooperativity of RNA under physiological ionic conditions. RNA 20:331–347. https://doi.org/10.1261/rna.042747.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mahen EM, Harger JW, Calderon EM, Fedor MJ (2005) Kinetics and thermodynamics make different contributions to RNA folding in vitro and in yeast. Mol Cell 19:27–37. https://doi.org/10.1016/j.molcel.2005.05.025

    Article  CAS  PubMed  Google Scholar 

  29. Noh S, Choe Y, Tamilavan V, Hyun MH, Kang HY, Yang H (2015) Facile electrochemical detection of Escherichia coli using redox cycling of the product generated by the intracellular beta-D-galactosidase. Sens. Actuator B-Chem. 209:951–956. https://doi.org/10.1016/j.snb.2014.12.073

    Article  CAS  Google Scholar 

  30. Seker E, Shih WC, Stine KJ (2018) Nanoporous metals by alloy corrosion: bioanalytical and biomedical applications. MRS Bull 43:49–56. https://doi.org/10.1557/mrs.2017.298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Y, Kim E, White IM, Bentley WE, Payne GF (2014) Information processing through a bio-based redox capacitor: signatures for redox-cycling. Bioelectrochemistry 98:94–102. https://doi.org/10.1016/j.bioelechem.2014.03.012

    Article  CAS  PubMed  Google Scholar 

  32. Kim E, Gordonov T, Bentley WE, Payne GF (2013) Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor. Anal Chem 85:2102–2108. https://doi.org/10.1021/ac302703y

    Article  CAS  PubMed  Google Scholar 

  33. Marcano-Velázquez JG, Batey RT (2015) Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context. J Biol Chem 290:4464–4475. https://doi.org/10.1074/jbc.M114.613497

    Article  CAS  PubMed  Google Scholar 

  34. Tyrrell J, McGinnis JL, Weeks KM, Pielak GJ (2013) The cellular environment stabilizes adenine riboswitch RNA structure. Biochemistry 52:8777–8785. https://doi.org/10.1021/bi401207q

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support from University of Virginia’s Global Infectious Diseases Institute, from MOST (Taiwan) grant #107-2923-M-001-011-MY3 and from AFOSR grants FA2386-18-1-4100 and FA2386-21-1-4070 are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan S. Swami.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1804 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Moore, J.H., Harbaugh, S. et al. Multiplexed assessment of engineered bacterial constructs for intracellular β-galactosidase expression by redox amplification on catechol-chitosan modified nanoporous gold. Microchim Acta 189, 4 (2022). https://doi.org/10.1007/s00604-021-05109-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05109-0

Keywords

Navigation