Skip to main content
Log in

Fabrication of two-dimensional metal–organic framework nanosheets/PDA composites as mixed-mode stationary phase for chromatographic separation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The synthesis of two-dimensional metal–organic frameworks (2D MOFs)/polymer core–shell composites is reported which were composed of polydopamine modified 2D Zr-1,3,5-(4-carboxylphenyl)-benzene (2D Zr-BTB) nanosheets and silica microspheres via a double-solvent approach. In this way, the composites were obtained under the condition of two solvents with different polarities to avoid agglomeration and uneven modification of most MOFs particles on the surface of the silica, existing inevitably in the one-pot method. Compared with the reported MOFs@silica composites adopting one-pot solvent method, the prepared composites exhibited significantly enhanced separation performance for sulfonamides, antibiotics, nucleosides, and polycyclic aromatic hydrocarbons compounds. Furthermore, the retention mechanisms were demonstrated by studying the relationships of chromatographic retention factors of tested analytes versus a variety of parameters under RPLC and HILIC modes, respectively. The superior chromatographic repeatability and stability were validated through the relative standard deviations of the retention time and/or column efficiency, which were found to be less than 0.8% and 0.9%, respectively. The material showed efficient separation ability for several types of compounds and provided another selectivity for preparing composites based on 2D MOFs nanosheets and other functional molecules.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yan W, Li S, Yang T, Xia Y, Zhang X, Wang C, Yan Z, Deng F, Zhou Q, Deng H (2020) Molecular vises for precisely positioning ligands near catalytic metal centers in metal-organic frameworks. J Am Chem Soc 142(38):16182–16187

    Article  CAS  Google Scholar 

  2. Yang Y, Zhang X, Kanchanakungwankul S, Lu Z, Noh H, Syed ZH, Farha OK, Truhlar DG, Hupp JT (2020) Unexpected “spontaneous” evolution of catalytic, MOF-supported single Cu(II) cations to catalytic, MOF-supported Cu(0) nanoparticles. J Am Chem Soc 142(50):21169–21177

    Article  CAS  Google Scholar 

  3. Jiang Z, Xu X, Ma Y, Cho HS, Ding D, Wang C, Wu J, Oleynikov P, Jia M, Cheng J, Zhou Y, Terasaki O, Peng T, Zan L, Deng H (2020) Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 586(7830):549–554

    Article  CAS  Google Scholar 

  4. Zhu D, Zhang Y, Bao S, Wang N, Yu S, Luo R, Ma J, Ju H, Lei J (2021) Dual intrareticular oxidation of mixed-ligand metal-organic frameworks for stepwise electrochemiluminescence. J Am Chem Soc 143(8):3049–3053

    Article  CAS  Google Scholar 

  5. Wang Y, Zhao G, Chi H, Yang S, Niu Q, Wu D, Cao W, Li T, Ma H, Wei Q (2021) Self-luminescent lanthanide metal-organic frameworks as signal probes in electrochemiluminescence immunoassay. J Am Chem Soc 143(1):504–512

    Article  CAS  Google Scholar 

  6. Qu C, Jiao Y, Zhao B, Chen D, Zou R, Walton KS, Liu M (2016) Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy 26:66–73

    Article  CAS  Google Scholar 

  7. Hu A, Pang Q, Tang C, Bao J, Liu H, Ba K, Xie S, Chen J, Chen J, Yue Y, Tang Y, Li Q, Sun Z (2019) Epitaxial growth and integration of insulating metal-organic frameworks in electrochemistry. J Am Chem Soc 141(28):11322–11327

    Article  CAS  Google Scholar 

  8. Yu MH, Space B, Franz D, Zhou W, He C, Li L, Krishna R, Chang Z, Li W, Hu TL, Bu XH (2019) Enhanced gas uptake in a microporous metal-organic framework via a sorbate induced-fit mechanism. J Am Chem Soc 141(44):17703–17712

    Article  CAS  Google Scholar 

  9. Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38(5):1477–1504

    Article  CAS  Google Scholar 

  10. Ahmed A, Seth S, Purewal J, Wong-Foy AG, Veenstra M, Matzger AJ, Siegel DJ (2019) Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nat Commun 10(1):1568

    Article  Google Scholar 

  11. Liu Q, Song Y, Ma Y, Zhou Y, Cong H, Wang C, Wu J, Hu G, O’Keeffe M, Deng H (2019) Mesoporous cages in chemically robust MOFs created by a large number of vertices with reduced connectivity. J Am Chem Soc 141(1):488–496

    Article  CAS  Google Scholar 

  12. Yang SS, Chang YJ, Zhang H, Yu X, Shang W, Chen GQ, Chen DDY, Gu ZY (2018) Enrichment of phosphorylated peptides with metal-organic framework nanosheets for serum profiling of diabetes and phosphoproteomics analysis. Anal Chem 90(22):13796–13805

    Article  CAS  Google Scholar 

  13. Lin S, Zhao Y, Yun YS (2018) Highly effective removal of nonsteroidal anti-inflammatory pharmaceuticals from water by Zr(IV)-based metal-organic framework: adsorption performance and mechanisms. ACS Appl Mater Interfaces 10(33):28076–28085

    Article  CAS  Google Scholar 

  14. Wu X, Shao Y, Hu B, Wang J, Hou X (2020) Preparation and application of novel MIL-101(Cr) composite in liquid chromatographic separation of aromatic compounds: experimental and computational insights. Mikrochim Acta 187(8):471

    Article  CAS  Google Scholar 

  15. Si T, Wang S, Zhang H, Wang L, Lu X, Liang X, Guo Y (2021) Design and evaluation of novel MOF-polymer core-shell composite as mixed-mode stationary phase for high performance liquid chromatography. Mikrochim Acta 188(3):76

    Article  CAS  Google Scholar 

  16. Yang S, Peng L, Syzgantseva OA, Trukhina O, Kochetygov I, Justin A, Sun DT, Abedini H, Syzgantseva MA, Oveisi E, Lu G, Queen WL (2020) Preparation of highly porous metal-organic framework beads for metal extraction from liquid streams. J Am Chem Soc 142(31):13415–13425

    Article  CAS  Google Scholar 

  17. Chen G, Huang S, Kou X, Zhu F, Ouyang G (2020) Embedding functional biomacromolecules within peptide-directed metal-organic framework (MOF) nanoarchitectures enables activity enhancement. Angew Chem Int Ed Engl 59(33):13947–13954

    Article  CAS  Google Scholar 

  18. Peng L, Yang S, Sun DT, Asgari M, Queen WL (2018) MOF/polymer composite synthesized using a double solvent method offers enhanced water and CO2 adsorption properties. Chem Commun (Camb) 54(75):10602–10605

    Article  CAS  Google Scholar 

  19. Liu C, Sun Q, Lin L, Wang J, Zhang C, Xia C, Bao T, Wan J, Huang R, Zou J, Yu C (2020) Ternary MOF-on-MOF heterostructures with controllable architectural and compositional complexity via multiple selective assembly. Nat Commun 11(1):4971

    Article  CAS  Google Scholar 

  20. Mizutani N, Hosono N, Le Ouay B, Kitao T, Matsuura R, Kubo T, Uemura T (2020) Recognition of polymer terminus by metal-organic frameworks enabling chromatographic separation of polymers. J Am Chem Soc 142(8):3701–3705

    Article  CAS  Google Scholar 

  21. Karmakar A, Mileo PGM, Bok I, Peh SB, Zhang J, Yuan H, Maurin G, Zhao D (2020) Thermo-responsive MOF/polymer composites for temperature-mediated water capture and release. Angew Chem Int Ed Engl 59(27):11003–11009

    Article  CAS  Google Scholar 

  22. Rui K, Zhao G, Chen Y, Lin Y, Zhou Q, Chen J, Zhu J, Sun W, Huang W, Dou SX (2018) Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis. Adv Func Mater 28(26):1801554

    Article  Google Scholar 

  23. Jia H, Yao Y, Zhao J, Gao Y, Luo Z, Du P (2018) A novel two-dimensional nickel phthalocyanine-based metal–organic framework for highly efficient water oxidation catalysis. J Mater Chem A 6(3):1188–1195

    Article  CAS  Google Scholar 

  24. Xia H, Zhang J, Yang Z, Guo S, Guo S, Xu Q (2017) 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis Performances. Nanomicro Lett 9(4):43

    PubMed  PubMed Central  Google Scholar 

  25. Tao ZR, Wu JX, Zhao YJ, Xu M, Tang WQ, Zhang QH, Gu L, Liu DH, Gu ZY (2019) Untwisted restacking of two-dimensional metal-organic framework nanosheets for highly selective isomer separations. Nat Commun 10(1):2911

    Article  Google Scholar 

  26. Si T, Song X, Wang L, Guo Y, Liang X, Wang S (2020) Preparation and evaluation of hydrophobically associating polyacrylamide coated silica composite as high performance liquid chromatographic stationary phase. Microchem J 152:104330

    Article  CAS  Google Scholar 

  27. Juliette van der Meer IB-G, Mercier C, Revel B, Davidson A, Denoyel R (2010) Mechanism of metal oxide nanoparticle loading in SBA-15 by the double solvent technique. J Phys Chem C 114:3507–3515

    Article  Google Scholar 

  28. Hao Z, Xiao B, Weng N (2008) Impact of column temperature and mobile phase components on selectivity of hydrophilic interaction chromatography (HILIC). J Sep Sci 31(9):1449–1464

    Article  CAS  Google Scholar 

  29. Guo Y, Gaiki S (2011) Retention and selectivity of stationary phases for hydrophilic interaction chromatography. J Chromatogr A 1218(35):5920–5938

    Article  CAS  Google Scholar 

  30. Taraji M, Haddad PR, Amos RIJ, Talebi M, Szucs R, Dolan JW, Pohl CA (2018) Chemometric-assisted method development in hydrophilic interaction liquid chromatography: a review. Anal Chim Acta 1000:20–40

    Article  CAS  Google Scholar 

  31. Xia H, Wang J, Chen G, Liu J, Wan G, Bai Q (2019) One-pot synthesis of SiO2@SiO2 core-shell microspheres with controllable mesopore size as a new stationary phase for fast HPLC separation of alkyl benzenes and beta-agonists. Mikrochim Acta 186(2):125

    Article  Google Scholar 

  32. Alvarez-Segura T, Cabo-Calvet E, Baeza-Baeza JJ, Garcia-Alvarez-Coque MC (2019) Study of the column efficiency using gradient elution based on Van Deemter plots. J Chromatogr A 1584:126–134

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by National Science Foundation of China (No. 21575149 and No. 21505146).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuai Wang or Yong Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11686 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, T., Lu, X., Zhang, H. et al. Fabrication of two-dimensional metal–organic framework nanosheets/PDA composites as mixed-mode stationary phase for chromatographic separation. Microchim Acta 188, 360 (2021). https://doi.org/10.1007/s00604-021-05023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05023-5

Keywords

Navigation