Skip to main content
Log in

3D-printed smartphone-based device for fluorimetric diagnosis of ketosis by acetone-responsive dye marker and red emissive carbon dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A portable smartphone device is reported that uses 3D printing technology for the primary diagnosis of diseases by detecting acetone. The key part of the device consists of red carbon dots (RCDs), which are used as internal standards, and a sensing reagent (3-N,N-(diacethydrazide)-9-ethylcarbazole (2-HCA)) for acetone. With an excitation wavelength of 360 nm, the emission wavelengths of 2-HCA and RCDs are 443 nm and 619 nm, respectively. 2-HCA effectively captures acetone to form a nonfluorescent acylhydrazone via a condensation reaction occurring in aqueous solution, resulting in obvious color changes from blue-violet to dark red. The detection limit for acetone is 2.62 μM (~ 0.24 ppm). This is far lower than the ketone content in normal human blood (≤ 0.50 mM) and the acetone content in human respiratory gas (≤ 1.80 ppm). The device has good recovery rates for acetone detection in blood and exhaled breath, which are 90.56–109.98% (RSD ≤ 5.48) and 92.80–108.00% (RSD ≤ 5.07), respectively. The method designed here provides a reliable way to provide health warnings by visually detecting markers of ketosis/diabetes in blood or exhaled breath.

Graphical abstract

The portable smart phone device visually detects ketosis/diabetes markers in the blood or exhaled breath through the nucleophilic addition reaction, which effectively captures acetone to form nonfluorescent acyl groups. This will be a reliable tool to warn human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu GM, Chen B, Liu GZ, Yao SZ (2010) Rapid analysis of acetone in human plasma by derivatization desorption electrospray ionization. Analyst 135:2415–2419

    Article  CAS  Google Scholar 

  2. Dallenne C, Da Costa A, Decre D, Favier C, Arlet G (2010) Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemoth 65:490–495

    Article  CAS  Google Scholar 

  3. Fleischer M, Simon E, Rumpel E, Ulmer H, Harbeck M, Wandel M, Fietzek C, Weimar U, Meixner H (2002) Detection of volatile compounds correlated to human diseases through breath analysis with chemical sensors. Sensor Actuat B-Chem 83:245–249

    Article  CAS  Google Scholar 

  4. Kamysek S, Fuchs P, Schwoebel H, Roesner JP, Kischkel S, Wolter K, Loeseken C, Schubert JK, Miekisch W (2011) Drug detection in breath: effects of pulmonary blood flow and cardiac output on propofol exhalation. Anal Bioanal Chem 401:2093–2102

    Article  CAS  Google Scholar 

  5. Devamoglu U, Duman I, Saygili E, Yesil-Celiktas O (2021) Development of an integrated optical sensor for determination of beta-Hydroxybutyrate within the microplatform. Biotech, Appl Biochem

    Google Scholar 

  6. Puchalska P, Nelson AB, Stagg DB, Crawford PA (2021) Determination of ketone bodies in biological samples via rapid UPLC-MS/MS. Talanta 225:122048

    Article  CAS  Google Scholar 

  7. Crawford P (2019) Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Biophys J 116:2a

    Article  Google Scholar 

  8. McPherson PAC, McEneny J (2012) The biochemistry of ketogenesis and its role in weight management, neurological disease and oxidative stress. J Physiol Biochem 68:141–151

    Article  CAS  Google Scholar 

  9. Bayrakli I (2017) Breath analysis using external cavity diode lasers: a review. J Biomed Opt:22

  10. Zhao Y, Gu H, Li HC, Huang L, Cen XB (2020) Accuracy improvement of electrochemical whole blood ketone sensor based on HCT compensation algorithm. Electrophoresis 41:1446–1449

    Article  CAS  Google Scholar 

  11. Sharafeldin M, Kadimisetty K, Bhalerao KS, Chen TQ, Rusling JF (2020) 3D-printed Immunosensor arrays for Cancer diagnostics, sensors-Basel, 20

  12. Wang HQ, Yang L, Chu SY, Liu BH, Zhang QK, Zou LM, Yu SM, Jiang CL (2019) Semiquantitative visual detection of Lead ions with a smartphone via a colorimetric paper-based analytical device. Anal Chem 91:9292–9299

    Article  CAS  Google Scholar 

  13. Chu SY, Wang HQ, Du YX, Yang F, Yang L, Jiang CL (2020) Portable smartphone platform integrated with a Nanoprobe-based fluorescent paper strip: visual monitoring of glutathione in human serum for health prognosis. ACS Sustain Chem Eng 8:8175–8183

    Article  CAS  Google Scholar 

  14. Yu XL, Yang LL, Zhao TT, Zhang RL, Yang L, Jiang CL, Zhao J, Liu BH, Zhang ZP (2017) Multicolorful ratiometric-fluorescent test paper for determination of fluoride ions in environmental water. RSC Adv 7:53379–53384

    Article  CAS  Google Scholar 

  15. Qiao GX, Chen G, Wen Q, Liu WQ, Gao JW, Yu ZQ, Wang QM (2020) Rapid conversion from common precursors to carbon dots in large scale: spectral controls, optical sensing, cellular imaging and LEDs application. J Colloid Interf Sci 580:88–98

    Article  CAS  Google Scholar 

  16. Wang KN, Ma W, Xu YC, Liu X, Chen G, Yu M, Q.L. Pan, Huang CB, Li XC, Mu QC, Sun YB, Yu ZQ (2020) Design of a novel mitochondria targetable turn-on fluorescence probe for hydrogen peroxide and its two-photon bioimaging applications, Chinese Chem Lett, 31 3149–3152

  17. Yu L, He P, Xu YC, Kou XY, Yu ZQ, Xie XB, Miao P (2020) Manipulations of DNA four-way junction architecture and DNA modified Fe3O4@au nanomaterials for the detection of miRNA, sensor Actuat B-Chem, 313

  18. Jiang K, Sun S, Zhang L, Lu Y, Wu AG, Cai CZ, Lin HW (2015) Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Edit 54:5360–5363

    Article  CAS  Google Scholar 

  19. Han S, Yang L, Wen ZG, Chu SY, Wang M, Wang ZY, Jiang CL (2020) A dual-response ratiometric fluorescent sensor by europium-doped CdTe quantum dots for visual and colorimetric detection of tetracycline. J Hazardous Mat:398

  20. Fujii S, Maeda T, Noge I, Kitagawa Y, Todoroki K, Inoue K, Min JZ, Toyo'oka T (2014) Determination of acetone in saliva by reversed-phase liquid chromatography with fluorescence detection and the monitoring of diabetes mellitus patients with ketoacidosis. Clin Chim Acta 430:140–144

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 rev. C.01, Wallingford, CT

  22. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  23. Yao KX, Yin XM, Wang TH, Zeng HC (2010) Synthesis, self-assembly, disassembly, and reassembly of two types of Cu2O nanocrystals unifaceted with {001} or {110} Planes. J Am Chem Soc 132:6131–6144

    Article  CAS  Google Scholar 

  24. Jie OY, Hong H, Zhao Y, Shen HQ, Shen C, Zhang CY, Zhang JF (2008) Bioimaging nitric oxide in activated macrophages in vitro and hepatic inflammation in vivo based on a copper-naphthoimidazol coordination compound. Nitric Oxide-Biol Chem 19:42–49

    Google Scholar 

  25. Ding H, Yu SB, Wei JS, Xiong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491

    Article  CAS  Google Scholar 

  26. Qi J, Li BW, Wang XY, Fu LW, Luo LQ, Chen LX (2018) Rotational paper-based microfluidic-chip device for multiplexed and simultaneous fluorescence detection of phenolic pollutants based on a molecular-imprinting technique, Anal Chem, 90 11827–11834

  27. Pan LL, Sun S, Zhang AD, Jiang K, Zhang L, Dong CQ, Huang Q, Wu AG, Lin HW (2015) Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv Mater 27:7782–7787

    Article  CAS  Google Scholar 

  28. Wu DD, Wang DM, Ye XM, Yuan KR, Xie YL, Li BH, Huang CB, Kuang TR, Yu ZQ, Chen Z (2020) Fluorescence detection of Escherichia coli on mannose modified ZnTe quantum dots. Chinese Chem Lett 31:1504–1507

    Article  CAS  Google Scholar 

  29. Zhao P, Xu Q, Tao J, Jin ZW, Pan Y, Yu CM, Yu ZQ (2018) Near infrared quantum dots in biomedical applications: current status and future perspective. Wires Nanomed Nanobi:10

  30. Zhou YJ, Huang XY, Liu C, Zhang RL, Gu XL, Guan GJ, Jiang CL, Zhang LY, Du SH, Liu BH, Han MY, Zhang ZP (2016) Color-multiplexing-based fluorescent test paper: dosage-sensitive visualization of arsenic(III) with discernable scale as low as 5 ppb. Anal Chem 88:6105–6109

    Article  CAS  Google Scholar 

  31. Wang JP, Yang L, Liu BH, Jiang HH, Liu RY, Yang JW, Han GM, Mei QS, Zhang ZP (2014) Inkjet-printed silver nanoparticle paper detects airborne species from crystalline explosives and their Ultratrace residues in open environment. Anal Chem 86:3338–3345

    Article  CAS  Google Scholar 

  32. Tomita I, Kume S, Sugahara S, Osawa N, Yamahara K, Yasuda-Yamahara M, Takeda N, Chin-Kanasaki M, Kaneko T, Mayoux E, Mark M, Yanagita M, Ogita H, Araki S, Maegawa H (2020) SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metab 32:404

    Article  CAS  Google Scholar 

  33. Sperry J, Condro MC, Guo L, Braas D, Vanderveer-Harris N, Kim KKO, Pope WB, Divakaruni AS, Lai A, Christofk H, Castro MG, Lowenstein PR, Le Belle JE, Kornblum HI (2020) Glioblastoma utilizes fatty acids and ketone bodies for growth allowing progression during ketogenic diet therapy. Iscience 23:101453

    Article  CAS  Google Scholar 

  34. Moller N (2020) Ketone body, 3-Hydroxybutyrate: minor metabolite major medical manifestations. J Clin Endocr Metab 105:2884–2892

    Article  Google Scholar 

  35. Saraoglu HM, Kocan M (2010) Determination of blood glucose level-based breath analysis by a quartz crystal microbalance sensor Array. IEEE Sensors J 10:104–109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (21671052, 21806168), Key Research and Development Program of Anhui Province (202004d07020013, 1804a07020103), Natural Science Foundation of Anhui Province (2008085QB69), and Scientific Research Foundation for High-Level Talents of West Anhui University (WGKQ2021001). The numerical calculations in this paper were performed on the Scientific Research Cloud Platform in the School of Chemistry and Chemical Engineering, Liaocheng University.

Author information

Authors and Affiliations

Authors

Contributions

ΙΙYang F. and Yang L.L. contributed equally to this paper. The manuscript was written with contributions from all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Liang Yang or Changlong Jiang.

Ethics declarations

Competing interests

The authors declare no competing interest.

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

The version contains supplementary material available on the website.

ESM 1

(DOCX 2618 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Yang, L., Xu, L. et al. 3D-printed smartphone-based device for fluorimetric diagnosis of ketosis by acetone-responsive dye marker and red emissive carbon dots. Microchim Acta 188, 306 (2021). https://doi.org/10.1007/s00604-021-04965-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04965-0

Keywords

Navigation