Skip to main content
Log in

Au nanoparticle plasmon-enhanced electrochemiluminescence aptasensor based on the 1D/2D PTCA/CoP for diclofenac assay

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The combination of localized surface plasmon resonance (LSPR) and electrochemiluminescence (ECL) can be an effective way to amplify the signal intensity. In this work, an ECL aptasensor with 3,4,9,10-perylenetetracarboxylic acid–decorated cobalt phosphate (denoted as PTCA/CoP) as the ECL emitter and Au nanoparticles (NPs) as plasma was proposed for diclofenac assay. The prepared PTCA/CoP with special 1D/2D structure exhibited good ability and excellent ECL performance. The diclofenac aptamer acted as a bridge to link the PTCA/CoP and Au NPs; thus, the ECL performance of PTCA/CoP was greatly improved due to the plasma effect of Au NPs. Besides, it was found that the ECL signal of the aptasensor was obviously quenched by the introduction of diclofenac, which might be due to the transformation from the LSPR process to the resonance energy transform (RET) process. Under optimal conditions, the difference of ECL intensity was negatively correlated with the concentration of diclofenac in the range 0.1 pM to 10 μM with a low detection limit of 0.072 pM at the potential of −1.8 V vs. Ag/AgCl (S/N = 3). The aptasensor was proved to be suitable for the detection of diclofenac in real samples, suggesting its great practicability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gao W, Saqib M, Qi L, Zhang W, Xu G (2017) Recent advances in electrochemiluminescence devices for point-of-care testing. Curr Opin Electrochem 3(1):4–10. https://doi.org/10.1016/j.coelec.2017.03.003

    Article  CAS  Google Scholar 

  2. Kerr E, Farr R, Doeven EH, Nai YH, Alexander R, Guijt RM, Prieto-Simon B, Francis PS, Dearnley M, Hayne DJ, Henderson LC, Voelcker NH (2021) Amplification-free electrochemiluminescence molecular beacon-based microRNA sensing using a mobile phone for detection. Sensors Actuators B Chem 330:129261. https://doi.org/10.1016/j.snb.2020.129261

    Article  CAS  Google Scholar 

  3. Mohammadzadeh-Asl S, Keshtkar A, Ezzati Nazhad Dolatabadi J, de la Guardia M (2018) Nanomaterials and phase sensitive based signal enhancement in surface plasmon resonance. Biosens Bioelectron 110:118–131. https://doi.org/10.1016/j.bios.2018.03.051

    Article  CAS  PubMed  Google Scholar 

  4. Guo C, Su F, Song Y, Hu B, Wang M, He L, Peng D, Zhang Z (2017) Aptamer-templated silver nanoclusters embedded in zirconium metal–organic framework for bifunctional electrochemical and SPR aptasensors toward carcinoembryonic antigen. ACS Appl Mater Interfaces 9(47):41188–41199. https://doi.org/10.1021/acsami.7b14952

    Article  CAS  PubMed  Google Scholar 

  5. Liu Y, Nie Y, Wang M, Zhang Q, Ma Q (2020) Distance-dependent plasmon-enhanced electrochemiluminescence biosensor based on MoS2 nanosheets. Biosens Bioelectron 148:111823. https://doi.org/10.1016/j.bios.2019.111823

    Article  CAS  PubMed  Google Scholar 

  6. Feng X, Han T, Xiong Y, Wang S, Dai T, Chen J, Zhang X, Wang G (2019) Plasmon-enhanced electrochemiluminescence of silver nanoclusters for microRNA detection. ACS Sensors 4(6):1633–1640. https://doi.org/10.1021/acssensors.9b00413

    Article  CAS  Google Scholar 

  7. Wang S, Dong Y, Liang X (2018) Development of a SPR aptasensor containing oriented aptamer for direct capture and detection of tetracycline in multiple honey samples. Biosens Bioelectron 109:1–7. https://doi.org/10.1016/j.bios.2018.02.051

    Article  CAS  PubMed  Google Scholar 

  8. Albanese CM, Suttapitugsakul S, Perati S, McGown LB (2018) A genome-inspired, reverse selection approach to aptamer discovery. Talanta 177:150–156. https://doi.org/10.1016/j.talanta.2017.08.093

    Article  CAS  PubMed  Google Scholar 

  9. Nodehi M, Baghayeri M, Behazin R, Veisi H (2021) Electrochemical aptasensor of bisphenol A constructed based on 3D mesoporous structural SBA-15-Met with a thin layer of gold nanoparticles. Microchem J 162:105825. https://doi.org/10.1016/j.microc.2020.105825

    Article  CAS  Google Scholar 

  10. Wu D, Sui Q, Yu X, Zhao W, Li Q, Fatta-Kassinos D, Lyu S (2021) Identification of indicator PPCPs in landfill leachates and livestock wastewaters using multi-residue analysis of 70 PPCPs: analytical method development and application in Yangtze River Delta, China. Sci Total Environ 753:141653. https://doi.org/10.1016/j.scitotenv.2020.141653

    Article  CAS  PubMed  Google Scholar 

  11. Yang L, Wang T, Zhou Y, Shi B, Bi R, Meng J (2021) Contamination, source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin, an intensive human intervention area, China. Sci Total Environ 760:144080. https://doi.org/10.1016/j.scitotenv.2020.144080

    Article  CAS  PubMed  Google Scholar 

  12. Chen S, Xie J, Wen Z (2020) Removal of pharmaceutical and personal care products (PPCPs) from waterbody using a revolving algal biofilm (RAB) reactor. J Hazard Mater 406:124284. https://doi.org/10.1016/j.jhazmat.2020.124284

    Article  CAS  PubMed  Google Scholar 

  13. Penha LCC, Rola RC, Martinez CBR, Martins CMG (2021) Effects of anti-inflammatory diclofenac assessed by toxicity tests and biomarkers in adults and larvae of Danio rerio. Comp Biochem Physiol C: Pharmacol Toxicol 242:108955. https://doi.org/10.1016/j.cbpc.2020.108955

    Article  CAS  Google Scholar 

  14. Guiloski IC, Stein Piancini LD, Dagostim AC, de Morais Calado SL, Fávaro LF, Boschen SL, Cestari MM, da Cunha C, Silva de Assis HC (2017) Effects of environmentally relevant concentrations of the anti-inflammatory drug diclofenac in freshwater fish Rhamdia quelen. Ecotoxicol Environ Saf 139:291–300. https://doi.org/10.1016/j.ecoenv.2017.01.053

    Article  CAS  PubMed  Google Scholar 

  15. Efosa NJ, Kleiner W, Kloas W, Hoffmann F (2017) Diclofenac can exhibit estrogenic modes of action in male Xenopus laevis, and affects the hypothalamus-pituitary-gonad axis and mating vocalizations. Chemosphere 173:69–77. https://doi.org/10.1016/j.chemosphere.2017.01.030

    Article  CAS  PubMed  Google Scholar 

  16. Arvand M, Gholizadeh TM, Zanjanchi MA (2012) MWCNTs/Cu(OH)2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac. Mater Sci Eng 32(6):1682–1689. https://doi.org/10.1016/j.msec.2012.04.066

    Article  CAS  Google Scholar 

  17. Jin W, Zhang J (2000) Determination of diclofenac sodium by capillary zone electrophoresis with electrochemical detection. J Chromatogr A 868(1):101–107. https://doi.org/10.1016/S0021-9673(99)01149-8

    Article  CAS  Google Scholar 

  18. Hájková R, Solich P, Pospišilová M, Šicha J (2002) Simultaneous determination of methylparaben, propylparaben, sodium diclofenac and its degradation product in a topical emulgel by reversed-phase liquid chromatography. Anal Chim Acta 467(1):91–96. https://doi.org/10.1016/S0003-2670(02)00131-9

    Article  Google Scholar 

  19. Shishov A, Nechaeva D, Bulatov A (2019) HPLC-MS/MS determination of non-steroidal anti-inflammatory drugs in bovine milk based on simultaneous deep eutectic solvents formation and its solidification. Microchem J 150:104080. https://doi.org/10.1016/j.microc.2019.104080

    Article  CAS  Google Scholar 

  20. Mlunguza NY, Ncube S, Mahlambi PN, Chimuka L, Madikizela LM (2020) Optimization and application of hollow fiber liquid-phase microextraction and microwave-assisted extraction for the analysis of non-steroidal anti-inflammatory drugs in aqueous and plant samples. Environ Monit Assess 192(8):557. https://doi.org/10.1007/s10661-020-08527-4

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Jiang D, Shan X, Wang W, Chen Z (2020) An “off-on” electrochemiluminescence aptasensor for microcystin-LR assay based on the resonance energy transfer from PTCA/NH2-MIL-125(Ti) to gold nanoparticles. Microchim Acta 187(8):474. https://doi.org/10.1007/s00604-020-04453-x

    Article  CAS  Google Scholar 

  22. Srinivas S, Ch. Venkata R, Kakarla RR, Shetti NP, Reddy MS, Anjanapura VR (2019) Novel Co and Ni metal nanostructures as efficient photocatalysts for photodegradation of organic dyes. Mater Res Express 6(12):125502. https://doi.org/10.1088/2053-1591/ab5328

    Article  CAS  Google Scholar 

  23. Kannan K, Radhika D, Nesaraj AS, Kumar Sadasivuni K, Reddy KR, Kasai D, Raghu AV (2020) Photocatalytic, antibacterial and electrochemical properties of novel rare earth metal oxides-based nanohybrids. Mater Sci Energy Technol 3:853–861. https://doi.org/10.1016/j.mset.2020.10.008

    Article  CAS  Google Scholar 

  24. Song X, Shao X, Dai L, Fan D, Ren X, Sun X, Luo C, Wei Q (2020) Triple amplification of 3,4,9,10-perylenetetracarboxylic acid by Co(2+)-based metal-organic frameworks and silver-cysteine and its potential application for ultrasensitive assay of procalcitonin. ACS Appl Mater Interfaces 12(8):9098–9106. https://doi.org/10.1021/acsami.9b23248

    Article  CAS  PubMed  Google Scholar 

  25. Shi T, Wen Z, Ding L, Liu Q, Guo Y, Ding C, Wang K (2019) Visible/near-infrared light response VOPc/carbon nitride nanocomposites: VOPc sensitizing carbon nitride to improve photo-to-current conversion efficiency for fabricating photoelectrochemical diclofenac aptasensor. Sensors Actuators B Chem 299:126834. https://doi.org/10.1016/j.snb.2019.126834

    Article  CAS  Google Scholar 

  26. Li J, Shan X, Jiang D, Chen Z (2020) An ultrasensitive electrochemiluminescence aptasensor for the detection of diethylstilbestrol based on the enhancing mechanism of the metal–organic framework NH2-MIL-125(Ti) in a 3,4,9,10-perylenetetracarboxylic acid/K2S2O8 system. Analyst 145(9):3306–3312. https://doi.org/10.1039/D0AN00212G

    Article  CAS  PubMed  Google Scholar 

  27. Zhu D, Yan Y, Lei P, Shen B, Cheng W, Ju H, Ding S (2014) A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe. Anal Chim Acta 846:44–50. https://doi.org/10.1016/j.aca.2014.07.024

    Article  CAS  PubMed  Google Scholar 

  28. Fu X, Yang Y, Wang N, Chen S (2017) The electrochemiluminescence resonance energy transfer between Fe-MIL-88 metal–organic framework and 3, 4, 9, 10-perylenetetracar-boxylic acid for dopamine sensing. Sensors Actuators B Chem 250:584–590. https://doi.org/10.1016/j.snb.2017.04.054

    Article  CAS  Google Scholar 

  29. Peng H, Huang Z, Wu W, Liu M, Huang K, Yang Y, Deng H, Xia X, Chen W (2019) Versatile high-performance electrochemiluminescence ELISA platform based on a gold nanocluster probe. ACS Appl Mater Interfaces 11(27):24812–24819. https://doi.org/10.1021/acsami.9b08819

    Article  CAS  PubMed  Google Scholar 

  30. Prabhu R, Roopashree B, Jeevananda T, Rao S, Raghava Reddy K, Raghu AV (2021) Synthesis and corrosion resistance properties of novel conjugated polymer-Cu2Cl4L3 composites. Mater Sci for Energy Technol 4:92–99. https://doi.org/10.1016/j.mset.2021.01.001

    Article  CAS  Google Scholar 

  31. Huang L, Shen R, Liu R, Xu S, Shuai Q (2021) Facile fabrication of magnetic covalent organic frameworks for magnetic solid-phase extraction of diclofenac sodium in milk. Food Chem 347:129002. https://doi.org/10.1016/j.foodchem.2021.129002

    Article  CAS  PubMed  Google Scholar 

  32. Giagoudakis G, Markantonis SL (1998) An alternative high-performance liquid-chromatographic method for the determination of diclofenac and flurbiprofen in plasma. J Pharmaceut Biomed 17(4):897–901. https://doi.org/10.1016/S0731-7085(97)00258-6

    Article  CAS  Google Scholar 

  33. Ensafi AA, Izadi M, Karimi-Maleh H (2013) Sensitive voltammetric determination of diclofenac using room-temperature ionic liquid-modified carbon nanotubes paste electrode. Ionics 19(1):137–144. https://doi.org/10.1007/s11581-012-0705-0

    Article  CAS  Google Scholar 

  34. Okoth OK, Yan K, Feng J, Zhang J (2018) Label-free photoelectrochemical aptasensing of diclofenac based on gold nanoparticles and graphene-doped CdS. Sensors Actuators B Chem 256:334–341. https://doi.org/10.1016/j.snb.2017.10.089

    Article  CAS  Google Scholar 

  35. Derikvand H, Roushani M, Abbasi AR, Derikvand Z, Azadbakht A (2016) Design of folding-based impedimetric aptasensor for determination of the nonsteroidal anti-inflammatory drug. Anal Biochem 513:77–86. https://doi.org/10.1016/j.ab.2016.06.013

    Article  CAS  PubMed  Google Scholar 

  36. Kashefi-Kheyrabadi L, Mehrgardi MA (2012) Design and construction of a label free aptasensor for electrochemical detection of sodium diclofenac. Biosens Bioelectron 33(1):184–189. https://doi.org/10.1016/j.bios.2011.12.050

    Article  CAS  PubMed  Google Scholar 

  37. Wang C, Jiang T, Zhao K, Deng A, Li J (2019) A novel electrochemiluminescent immunoassay for diclofenac using conductive polymer functionalized graphene oxide as labels and gold nanorods as signal enhancers. Talanta 193:184–191. https://doi.org/10.1016/j.talanta.2018.09.103

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We are very grateful for the support from the Natural Science Foundation of Jiangsu Province (BK20190928), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJB150003), the National Natural Science Foundation of China (51874050, 21904014), the Foundation of Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110), and the Foundation of the Science and Technology Bureau of Changzhou Province (CQ20204033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

The following is the Supplementary data to this article:

ESM 1

(DOCX 944 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Shan, X., Jiang, D. et al. Au nanoparticle plasmon-enhanced electrochemiluminescence aptasensor based on the 1D/2D PTCA/CoP for diclofenac assay. Microchim Acta 188, 231 (2021). https://doi.org/10.1007/s00604-021-04879-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04879-x

Keywords

Navigation