Skip to main content
Log in

Biomimetic recognition strategy for efficient capture and release of circulating tumor cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Efficient capture and release of circulating tumor cells play an important role in cancer diagnosis, but the limited affinity of monovalent adhesion molecules in existing capture technologies leads to low capture efficiency, and the captured cells are difficult to be separated. Inspired by the phenomenon that the long tentacles of jellyfish contain multiple adhesion domains and can effectively capture moving food, we have constructed a biomimetic recognition strategy to capture and release tumor cells. In details, gold-coated magnetic nanomaterials (Au@Fe3O4 NPs) were first prepared and characterized by scanning electron microscopy, UV-vis absorption spectra, and Zeta potential. Then, the DNA primers modified on Au@Fe3O4 nanoparticles can be extended to form many radialized DNA products by rolling circle amplification. These long DNA products resemble jellyfish tentacles and contain multivalent aptamers that can be extended into three dimensions to increase the accessibility of target cells, resulting in efficient, simple, rapid, and specific cells capture. The capture efficiencies are no less than 92% in PBS buffer and 77% in blood. Subsequently, DNase I was selected to degrade biomimetic tentacles to release the captured tumor cells with high viability. This release strategy can not only improve cell viability, but also reduce a tedious release process and unnecessary costs. We believe that the proposed method can be expanded for the capture and release of various tumor cells and will inspire the development of circulating tumor cells analysis.

Graphical abstract

A biomimetic recognition strategy for capture and release of circulating tumor cells has been developed. This method modified specific P1 DNA primers on Au@Fe3O4 NPs to form many radialized DNA products by rolling circle amplification. These products can efficiently capture CTCs since it contains multiple aptamers with a multivalent binding capacity. This make it a promising tool to capture and release of other tumor cells, and will inspire the development of CTC analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Riggi N, Aguet M, Stamenkovic I (2018) Cancer metastasis: a reappraisal of its underlying mechanisms and their relevance to treatment. Annu Rev Pathol 13:117–140

    Article  CAS  Google Scholar 

  2. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AGJ, Uhr JW, Terstappen LWMM (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10(20):6897–6904

    Article  Google Scholar 

  3. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu HL, Brannigan BW, Kapur R, Stott SL, Shioda T, Ramaswamy S, Ting DT, Lin CP, Toner M, Maheswaran S (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158(5):1110–1122

    Article  CAS  Google Scholar 

  4. Steeg PS (2016) Targeting metastasis. Nat Rev Cancer 16(4):201–218

    Article  CAS  Google Scholar 

  5. Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, Desai R, Zhu HL, Comaills V, Zheng ZL, Wittner BS, Stojanov P, Brachte E, Sgroi D, Kapur R, Shioda T, Ting DT, Ramaswamy S, Getz G, Iafrate AJ, Benes C, Toner M, Maheswaran S, Haber DA (2014) Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345(6193):216–220

    Article  CAS  Google Scholar 

  6. Mishra A, Dubash TD, Edd JF, Jewett MK, Garre SG, Karabacak NM, Rabe DC, Mutlu BR, Walsh JR, Kapur R, Stott SL, Maheswaran S, Haber DA, Toner M (2020) Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumor cells. Proc Natl Acad Sci 117(29):16839–16847

    Article  CAS  Google Scholar 

  7. Harouaka RA, Nisic M, Zheng SY (2013) Circulating tumor cell enrichment based on physical properties. J Assoc Lab Autom 18(6):455–468

    Article  CAS  Google Scholar 

  8. Jin C, McFaul SM, Duffy SP, Deng X, Tavassoli P, Black PC, Ma H (2014) Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments. Lab Chip 14(1):32–44

    Article  CAS  Google Scholar 

  9. Riethdorf S, Fritsche H, Müller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Jänicke F, Jackson S, Gornet T, Cristofanilli M, Pantel K (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res 13(3):920–928

    Article  CAS  Google Scholar 

  10. Rawal S, Yang YP, Cote R, Agarwal A (2017) Identification and quantitation of circulating tumor cells. Annu Rev Anal Chem 10:321–343

    Article  CAS  Google Scholar 

  11. Zhao WA, Cui CH, Bose S, Guo DG, Shen C, Wong WP, Halvorsen K, Farokhzad OC, Teo GSL, Phillips JA, Dorfman DM, Karnik R, Karp JM (2012) Bioinspired multivalent DNA network for capture and release of cells. Proc Natl Acad Sci 109(48):19626–19631

    Article  CAS  Google Scholar 

  12. Chen YL, Tyagi D, Lyu MS, Carrier AJ, Nganou C, Youden B, Wang W, Cui SF, Servos M, Oakes K, He SN, Zhang X (2019) Regenerative NanoOctopus based on multivalent-aptamer-functionalized magnetic microparticles for effective cell capture in whole blood. Anal Chem 91(6):4017–4022

    Article  CAS  Google Scholar 

  13. Wang ZR, Qin WW, Zhuang JL, Wu MH, Li Q, Fan CH, Zhang YQ (2019) Virus-mimicking cell capture using heterovalency magnetic DNA nanoclaws. ACS Appl Mater Interfaces 11(13):12244–12252

    Article  CAS  Google Scholar 

  14. Song P, Ye DK, Zuo XL, Li J, Wang JB, Liu HJ, Hwang MT, Chao J, Su S, Wang LH, Shi J, Wang LH, Huang W, Lal R, Fan CH (2017) DNA hydrogel with aptamer-toehold-based recognition, cloaking, and decloaking of circulating tumor cells for live cell analysis. Nano Lett 17(9):5193–5198

    Article  CAS  Google Scholar 

  15. Doane TL, Alam R, Maye MM (2015) Functionalization of quantum rods with oligonucleotides for programmable assembly with DNA origami. Nanoscale 7(7):2883–2888

    Article  CAS  Google Scholar 

  16. Alexander CM, Hamner KL, Maye MM, Dabrowiak JC (2014) Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery. Bioconjug Chem 25(7):1261–1271

    Article  CAS  Google Scholar 

  17. Ding P, Wang Z, Wu Z, Zhu W, Liu L, Sun N (2020) Aptamer-based nanostructured interfaces for the detection and release of circulating tumor cells. J Mater Chem B 8:3408–3422

    Article  CAS  Google Scholar 

  18. Zheng J, Fang XX, Qin J, Zhang ZF, Miao YM, Yan GQ (2016) A sensitive phosphorescence method based on MPA-capped Mn-doped ZnS quantum dots for the detection of diprophyllin. New J Chem 40(4):3857–3862

    Article  CAS  Google Scholar 

  19. Reddy SNS, Tan LH, Lu Y (2016) DNA-mediated morphological control of Pd-Au bimetallic nanoparticles. J Am Chem Soc 138(50):16542–16548

    Article  Google Scholar 

  20. Chen LH, Liu MC, Tang Y, Chen CF, Wang XX, Hu ZQ (2019) Preparation and properties of a low fouling magnetic nanoparticle and its application to the HPV genotypes assay in whole serum. ACS Appl Mater Interfaces 11(20):18637–18644

    Article  CAS  Google Scholar 

  21. Panda D, Saha P, Das T, Dash J (2017) Target guided synthesis using DNA nano-templates for selectively assembling a G-quadruplex binding c-MYC inhibitor. Nat Commun 8(1):1–11

    Article  Google Scholar 

  22. Chen J, Li CJ, Sun WL, Li YH, Deng CY, Qian H (2019) High catalytic activity of supported au nanoparticles assisted with the surface selective adsorption. J Nanopart Res 21(7):146

    Article  Google Scholar 

  23. Miao P, Tang YG, Wang L (2017) DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions. ACS Appl Mater Interfaces 9(4):3940–3947

    Article  CAS  Google Scholar 

  24. Gao T, Wang B, Shi L, Zhu XL, Xiang Y, Anzai JI, Li GX (2017) Ultrasensitive quantitation of plasma membrane proteins via is RTA. Anal Chem 89(20):10776–10782

    Article  CAS  Google Scholar 

  25. Gao T, Li LL, Chen TS, Shi L, Yang Y, Li GX (2018) DNA-oriented shaping of cell features for the detection of rare disseminated tumor cells. Anal Chem 91(1):1126–1132

    Article  Google Scholar 

  26. Gao T, Chen TS, Feng C, He X, Mu CL, Anzai JI, Li GX (2019) Design and fabrication of flexible DNA polymer cocoons to encapsulate live cells. Nat Commun 10(1):1–10

    Article  Google Scholar 

  27. Zheng J, Shi H, Wang MJ, Duan CJ, Huang Y, Li C, Xiang Y, Li GX (2019) Homogenous electrochemical method for ultrasensitive detection of tumor cells designed by introduction of poly (A) tails onto cell membranes. Anal Chem 92(2):2194–2200

    Article  Google Scholar 

  28. Ke ZF, Lin M, Chen JF, Choi JS, Zhang Y, Fong A, Liang AJ, Chen SF, Li QY, Fang WF, Zhang PS, Garcia MA, Lee T, Song M, Lin HA, Zhao HC, Luo SC, Hou S, Yu HH, Tseng HR (2015) Programming thermoresponsiveness of nanovelcro substrates enables effective purification of circulating tumor cells in lung cancer patients. ACS Nano 9(1):62–70

    Article  CAS  Google Scholar 

  29. Shen Q, Xu L, Zhao L, Wu D, Fan Y, Zhou Y (2013) Specific capture and release of circulating tumor cells using aptamer-modified nanosubstrates. Adv Mater 25(16):2368–2373

    Article  CAS  Google Scholar 

  30. Song Y, Shi Y, Huang M, Wang W, Wang Y, Cheng J (2019) Bioinspired engineering of a multivalent aptamer-functionalized nanointerface to enhance the capture and release of circulating tumor cells. Angew Chem Int Ed 131:2258–2262

    Google Scholar 

  31. Ding P, Wang Z, Wu Z, Zhou Y, Sun N, Pei R (2020) Natural biointerface based on cancer cell membranes for specific capture and release of circulating tumor cells. ACS Appl Mater Interfaces 12(18):20263–20270

    Article  CAS  Google Scholar 

  32. Chen JY, Tsai WS, Shao HJ, Wu JC, Lai JM, Lu SH, Hung TF, Yang CT, Wu LC, Chen JS (2016) Sensitive and specific biomimetic lipid coated microfluidics to isolate viable circulating tumor cells and microemboli for cancer detection. PLoS One 11(3):1–21

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81672570 and 81370926 to Yang Xiang).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai Shi, Zhongyun Wang or Yang Xiang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nanomaterials for biomedical imaging and targeting

Supplementary information

ESM 1

(DOCX 3.94 mb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Li, D., Jiao, J. et al. Biomimetic recognition strategy for efficient capture and release of circulating tumor cells. Microchim Acta 188, 220 (2021). https://doi.org/10.1007/s00604-021-04856-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04856-4

Keywords

Navigation