Skip to main content
Log in

Poly(ionic liquid)-hybridized silica aerogel for solid-phase microextraction of polycyclic aromatic hydrocarbons prior to gas chromatography-flame ionization detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Using poly(ionic liquid) (PIL) and tetraethyl orthosilicate (TEOS) as the co-precursors, PIL-hybridized silica aerogel was prepared via sol-gel method for solid-phase microextraction (SPME). The ratio between PIL and TEOS was regulated to achieve the best extraction effect. The aerogel was coated onto the surface of stainless steel wire to get SPME fiber. Coupled to gas chromatography-flame ionization detector (GC-FID), the fiber was separately evaluated by the determination of alkanes, polycyclic aromatic hydrocarbons (PAHs), as well as BTEX (benzene, toluene, ethylbenzene, and xylenes) in immersion mode. The extraction performance of PAHs was attributed to π stacking and hydrophobic effect. After optimization of main extraction and desorption conditions, the SPME-GC-FID method was established towards eight PAHs, and it provided low detection limits (0.005 μg L−1, 0.010 μg L−1) and wide linear ranges (0.016–20.00 μg L−1, 0.033–20.00 μg L−1) with good linear coefficients (0.9991–0.9998). The method was applied to detect trace PAHs in real water samples, with relative recoveries of 86.2–119.2%. Furthermore, PIL-hybridized silica aerogel exhibits some superiorities like higher sensitivity, shorter extraction time, and better repeatability over other extraction coatings. The present work not only extends the range of aerogel materials but also promoted their further applications in sample preparation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741–741

    Article  CAS  Google Scholar 

  2. Amonette JE, Matyáš J (2017) Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: a review. Micropor Mesopor Mat 250:100–119

    Article  CAS  Google Scholar 

  3. Tian Y, Feng J, Wang X, Luo C, Maloko Loussala H, Sun M (2019) An organic-inorganic hybrid silica aerogel prepared by co-precursor method for solid-phase microextraction coating. Talanta 194:370–376

    Article  CAS  Google Scholar 

  4. Ji X, Feng J, Li C, Han S, Feng J, Guo W, Sun M (2019) A silica aerogel as an extractive coating for in-tube solid-phase microextraction to determine polycyclic aromatic hydrocarbons in water samples. Anal Methods 10:2234–2241

    Google Scholar 

  5. Baktash MY, Bagheri H (2017) Silica aerogel coated on metallic wire by phase separation of polystyrene for in-tube solid phase microextraction. J Chromatogr A 1500:69–75

    Article  CAS  Google Scholar 

  6. Azari MR, Barkhordari A, Zendehdel R, Heidari M (2017) A novel needle trap device with nanoporous silica aerogel packed for sampling and analysis of volatile aldehyde compounds in air. Microchem J 134:270–276

    Article  CAS  Google Scholar 

  7. Roostaie A, Mohammadiazar S, Bargozin H, Ehteshami S (2018) A modified nanoporous silica aerogel as a new sorbent for needle trap extraction of chlorobenzenes from water samples. Chromatographia 81:649–655

    Article  CAS  Google Scholar 

  8. Kelly K, Milstein F (1998) Mechanical properties of silica aerogel. J Non-Cryst Solids 223:179–189

    Article  Google Scholar 

  9. Du A, Zhou B, Zhang Z, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6:941–968

    Article  CAS  Google Scholar 

  10. Baktash MY, Bagheri H (2017) A superhydrophobic silica aerogel with high surface area for needle trap microextraction of chlorobenzenes. Microchim Acta 184:2151–2156

    Article  CAS  Google Scholar 

  11. Bu Y, Feng J, Tian Y, Wang X, Sun M, Luo C (2017) An organically modified silica aerogel for online in-tube solid-phase microextraction. J Chromatogr A 1517:203–208

    Article  CAS  Google Scholar 

  12. Bhagat SD, Kim YH, Suh KH, Ahn YS, Yeo JG, Han JH (2008) Superhydrophobic silica aerogel powders with simultaneous surface modification, solvent exchange and sodium ion removal from hydrogels. Micropor Mesopor Mat 112:504–509

    Article  CAS  Google Scholar 

  13. Welton T (1999) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  CAS  Google Scholar 

  14. Huang K, Chen Y, Zhang X, Xia S, Wu Y, Hu X (2014) SO2 absorption in acid salt ionic liquids/sulfolane binary mixtures: experimental study and thermodynamic analysis. Chem Eng J 237:478–486

    Article  CAS  Google Scholar 

  15. Feng J, Maloko Loussala H, Han S, Ji X, Li C, Sun M (2020) Recent advances of ionic liquids in sample preparation. TrAC-Trend Anal Chem 125:115833

    Article  CAS  Google Scholar 

  16. Zhao R-S, Wang X, Sun J, Hu C, Wang X-K (2011) Determination of triclosan and triclocarban in environmental water samples with ionic liquid/ionic liquid dispersive liquid-liquid microextraction prior to HPLC-ESI-MS/MS. Microchim Acta 174:145–151

    Article  CAS  Google Scholar 

  17. Liu J-F, Li N, Jiang G-B, Liu J-M, Jönssonc JÅ, Wen M-J (2005) Disposable ionic liquid coating for headspace solid-phase microextraction of benzene, toluene, ethylbenzene, and xylenes in paints followed by gas chromatography-flame ionization detection. J Chromatogr A 1066:27–32

    Article  CAS  Google Scholar 

  18. Feng J, Sun M, Bu Y, Luo C (2015) Facile modification of multi-walled carbon nanotubes-polymeric ionic liquids-coated solid-phase microextraction fibers by on-fiber anion exchange. J Chromatogr A 1393:8–17

    Article  CAS  Google Scholar 

  19. Wen Q, Wang Y, Xu K, Li N, Zhang H, Yang Q (2016) A novel polymeric ionic liquid-coated magnetic multiwalled carbon nanotubes for the solid-phase extraction of Cu, Zn-superoxide dismutase. Anal Chim Acta 939:54–63

    Article  CAS  Google Scholar 

  20. Hou X, Guo Y, Liang X, Wang X, Wang L, Wang L (2016) Bis(trifl uoromethanesulfonyl)imide-based ionic liquids grafted on graphene oxide-coated solid-phase microextraction fiber for extraction and enrichment of polycyclic aromatic hydrocarbons in potatoes and phthalate esters in food-wrap. Talanta 153:392–400

    Article  CAS  Google Scholar 

  21. Zhang Y, Zhao Y-G, Chen W-S, Cheng H-L, Zhu Y (2018) Three-dimensional ionic liquid-ferrite functionalized graphene oxide nanocomposite for pipette-tip solid phase extraction of 16 polycyclic aromatic hydrocarbons in human blood sample. J Chromatogr A 1552:1–9

    Article  CAS  Google Scholar 

  22. Feng Y, Wu M, Zhao F, Zeng B (2016) Facile fabrication of ionic liquid doped polycarbazole coating for the headspace solid-phase microextraction of some environmental pollutants. Talanta 148:356–361

    Article  CAS  Google Scholar 

  23. Yuan Y, Liang S, Yan H, Ma Z, Liu Y (2015) Ionic liquid-molecularly imprinted polymers for pipette tip solid-phase extraction of (Z)-3-(chloromethylene)-6-flourothiochroman-4-one in urine. J Chromatogr A 1408:49–55

    Article  CAS  Google Scholar 

  24. Zheng J, Li S, Wang Y, Li L, Su C, Liu H, Zhu F, Jiang R, Ouyang G (2014) In situ growth of IRMOF-3 combined with ionic liquids to prepare solid-phase microextraction fibers. Anal Chim Acta 829:22–27

    Article  CAS  Google Scholar 

  25. Feng J, Wang X, Han S, Ji X, Li C, Luo C, Sun M (2019) An ionic liquid modified melamine-formaldehyde aerogel for in-tube solid-phase microextraction of estrogens followed by high performance liquid chromatography with diode array detection. Microchim Acta 186:769

    Article  CAS  Google Scholar 

  26. Tian Y, Feng J, Wang X, Luo C, Sun M (2019) Ionic liquid-functionalized silica aerogel as coating for solid-phase microextraction. J Chromatogr A 1583:48–54

    Article  CAS  Google Scholar 

  27. Mei M, Huang X, Chen L (2019) Recent development and applications of poly(ionic liquid)s in microextraction techniques. TrAC-Trend Anal Chem 112:123–134

    Article  CAS  Google Scholar 

  28. Sun M, Feng J, Bu Y, Luo C (2016) Ionic liquids coated copper wires and tubes for fiber-in-tube solid-phase microextraction. J Chromatogr A 1458:1–8

    Article  CAS  Google Scholar 

  29. Pei M, Zhang Z, Huang X, Wu Y (2017) Fabrication of a polymeric ionic liquid-based adsorbent for multiple monolithic fiber solid-phase microextraction of endocrine disrupting chemicals in complicated samples. Talanta 165:152–160

    Article  CAS  Google Scholar 

  30. Liu H, Ran F, Tao C, Zhao M, Jia Y, Guo Y (2016) A highly thermal stable solid phase microextraction fiber prepared by an inorganic binder. Anal Chim Acta 918:35–42

    Article  CAS  Google Scholar 

  31. King AJ, Readman JW, Zhou JL (2004) Determination of polycyclic aromatic hydrocarbons in water by solid-phase microextraction-gas chromatography-mass spectrometry. Anal Chim Acta 523:259–267

    Article  CAS  Google Scholar 

  32. Feng J, Sun M, Liu H, Li J, Liu X, Jiang S (2010) Au nanoparticles as a novel coating for solid-phase microextraction. J Chromatogr A 1217:8079–8086

    Article  CAS  Google Scholar 

  33. Gutiérrez-Serpa A, Napolitano-Tabares PI, Pino V, Jiménez-Moreno F, Jiménez-Abizanda AI (2018) Silver nanoparticles supported onto a stainless steel wire for direct-immersion solid-phase microextraction of polycyclic aromatic hydrocarbons prior to their determination by GC-FID. Microchim Acta 185:341–350

    Article  Google Scholar 

  34. Tian Y, Sun M, Wang X, Luo C, Feng J (2018) A nanospherical metal-organic framework UiO-66 for solid-phase microextraction of polycyclic aromatic hydrocarbons. Chromatographia 81:1053–1061

    Article  CAS  Google Scholar 

  35. Sun M, Feng J, Bu Y, Duan H, Wang X, Luo C (2014) Development of a solid-phase microextraction fiber by the chemical binding of graphene oxide on a silver-coated stainless-steel wire with an ionic liquid as the crosslinking agent. J Sep Sci 37:3691–3698

    Article  CAS  Google Scholar 

  36. Feng J, Sun M, Li J, Liu X, Jiang S (2012) A novel aromatically functional polymeric ionic liquid as sorbent material for solid-phase microextraction. J Chromatogr A 1227:54–59

    Article  CAS  Google Scholar 

  37. Yang Y, Qin P, Zhang J, Li W, Zhu J, Lu M, Cai Z (2018) Fabrication of nanoscale graphitic carbon nitride/copper oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of polycyclic aromatic hydrocarbons. J Chromatogr A 1570:47–55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC, No. 21777054) and the Shandong Provincial Natural Science Foundation of China (No. ZR2019MB058).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juanjuan Feng or Jing Fan.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Feng, J., Han, S. et al. Poly(ionic liquid)-hybridized silica aerogel for solid-phase microextraction of polycyclic aromatic hydrocarbons prior to gas chromatography-flame ionization detection. Microchim Acta 188, 96 (2021). https://doi.org/10.1007/s00604-021-04730-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04730-3

Keywords

Navigation