Skip to main content
Log in

Highly exfoliated functionalized MoS2 with sodium alginate-polydopamine conjugates for electrochemical sensing of cardio-selective β-blocker by voltammetric methods

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2) surface functionalization was performed with a catechol-containing polymer sodium alginate (SA) and dopamine (DA) through simultaneous MoS2 exfoliation and self-polymerization of DA. The MoS2/SA-PDA nanocomposite was characterized using spectroscopic, microscopic, and electroanalytical techniques to evaluate its electrocatalytic performance. The electrocatalytic behavior of the MoS2/SA-PDA nanocomposite modified electrode for the detection of acebutolol (ACE), a cardio-selective β-blocker drug was explored  through cyclic voltammetric and differential pulse voltammetric techniques. The influence of scan rate, concentration, and pH value on the oxidation peak current of ACE was investigated  to optimize the deducting condition. The electrochemical activity of the MoS2/SA-PDA nanocomposite electrode was attributed to the existence of reactive functional groups being contributed from SA, PDA, and MoS2 exhibiting a synergic effect. The MoS2/SA-PDA nanocomposite modified electrode exhibits admirable electrocatalytic activity with a wide linear response range (0.009 to 520 μM), low detection limit (5 nM), and high sensitivity (0.354 μA μM−1 cm−2) also in the presence of similar (potentially interfering) compounds. The fabricated MoS2/SA-PDA nanocomposite modified electrode can be useful for the detection of ACE in pharmaceutical analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sabidó M, Thilo H, Guido G (2019) Long-term effectiveness of bisoprolol in patients with angina: a real-world evidence study. Pharmacol Res 139:106–112

    Article  Google Scholar 

  2. Silva M, Morante-Zarcero S, Perez-Quintanilla D, Marina ML, Sierra I (2017) Preconcentration of β-blockers using functionalized ordered mesoporous silica as sorbent for SPE and their determination in waters by chiral CE. Electrophoresis 38:1905–1912

    Article  CAS  Google Scholar 

  3. Abdellatef HE, El-Henawee MM, El-Sayed HM, Ayad MM (2006) Spectrophotometric and spectrofluorimetric methods for analysis of tramadol, acebutolol and dothiepin in pharmaceutical preparations. Spectrochim Acta A 65:1087–1092

    Article  Google Scholar 

  4. Pujos E, Cren-Olivé C, Paisse O, Flament-Waton M-M, Grenier-Loustalot M-F (2009) Comparison of the analysis of β-blockers by different techniques. J Chromatogr B 877:4007–4014

    Article  CAS  Google Scholar 

  5. Delamoye M, Duverneuil C, Paraire F, de Mazancourt P, Alvarez J-C (2004) Simultaneous determination of thirteen β-blockers and one metabolite by gradient high-performance liquid chromatography with photodiode-array UV detection. Foren Sci Int 141:23–31

    Article  CAS  Google Scholar 

  6. El-Gindy A, Ashour A, Abdel-Fattah L, Shabana MM (2001) First derivative spectrophotometric, TLC-densitometric, and HPLC determination of acebutolol HCL in presence of its acid-induced degradation product. J Pharm Biomed Anal 24:527–534

    Article  CAS  Google Scholar 

  7. Pujos E, Cren-Olive C, Paisse O, Flament-Waton MM, Grenier-Loustalot MF (2009) Comparison of the analysis of beta-blockers by different techniques. J Chromatogr B Anal Technol Biomed Life Sci 877:4007–4014

    Article  CAS  Google Scholar 

  8. Bussy U, Ferchaud-Roucher V, Tea I, Krempf M, Silvestre V, Boujtita M (2012) Electrochemical oxidation behavior of Acebutolol and identification of intermediate species by liquid chromatography and mass spectrometry. Electrochim Acta 69:351–357

    Article  CAS  Google Scholar 

  9. Chen TW, Kumar JV, Chen SM, Mutharani B, Karthik R, Nagarajan ER, Muthuraj V (2019) Rational construction of novel rose petals-like yttrium molybdate nanosheets: a Janus catalyst for the detection and degradation of cardioselective β-blocker agent acebutolol. Chem Eng J 359:1472–1485

    Article  CAS  Google Scholar 

  10. Karikalan N, Elavarasan M, Yang TCK (2019) Effect of cavitation erosion in the sonochemical exfoliation of activated graphite for electrocatalysis of acebutolol. Ultrason Sonochem 56:297–304

    Article  CAS  Google Scholar 

  11. Yamuna A, Sundaresan P, Chen SM, Shih WL (2020) Ultrasound assisted synthesis of praseodymium tungstate nanoparticles for the electrochemical detection of cardioselective β-blocker drug. Microchem J 159:105420

    Article  CAS  Google Scholar 

  12. Bussy U, Tea I, Ferchaud-Roucher V, Krempf M, Silvestre V, Galland N, Jacquemin D, Andresen-Bergström M, Jurva U, Boujtita M (2013) Voltammetry coupled to mass spectrometry in the presence of isotope 18O labeled water for the prediction of oxidative transformation pathways of activated aromatic ethers: acebutolol anal. Chim Acta 762:39–46

    Article  CAS  Google Scholar 

  13. Levent A (2017) Voltammetric behavior of acebutolol on pencil graphite electrode: highly sensitive determination in real samples by square-wave anodic stripping voltammetry. J Iran Chem Soc 14(12):2495–2502

    Article  CAS  Google Scholar 

  14. Silva M, Morante-Zarcero S, Pérez-Quintanilla D, Sierra I (2019) Simultaneous determination of pindolol, acebutolol and metoprolol in waters by differential-pulse voltammetry using an efficient sensor based on carbon paste electrode modified with amino-functionalized mesostructured silica. Sensors Actuators B Chem 283:434–442

    Article  CAS  Google Scholar 

  15. Lee H, Choi TK, Lee YB, Cho HR, Ghari R, Wang L, Choi HJ, Chung TD, Lu N, Hyeon T (2016) A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 11:566–572

    Article  Google Scholar 

  16. Inagaki M, Kang F (2014) Graphene derivatives: graphene, fluorographene, graphene oxide, graphyne and graphdiyne. J Mater Chem A 2:13193–13206

    Article  CAS  Google Scholar 

  17. Zhang XD, Chen J, Min Y, Park GB, Shen X, Song SS, Sun YM, Wang H, Long W, Xie J (2014) Metabolizable Bi2Se3 nanoplates: biodistribution, toxicity, and uses for cancer radiation therapy and imaging. Adv Funct Mater 24:1718–1729

    Article  Google Scholar 

  18. Agarwal V, Chatterjee K (2018) Recent advances in the field of transition metal dichalcogenides for biomedical applications. Nanoscale. 10:16365–16397

    Article  CAS  Google Scholar 

  19. Soleymaniha M, Shahbazi M-A, Rafieerad AR, Maleki A, Amiri A (2019) Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv Healthc Mater 1:26

    Google Scholar 

  20. Lupan O, Cretu V, Deng M, Gedamu D, Paulowicz I, Kaps S, Mishra YK, Polonskyi O, Zamponi C, Kienle L (2014) Versatile growth of freestanding orthorhombic α-molybdenum trioxide nano-and microstructures by rapid thermal processing for gas nanosensors. J Phys Chem C 118(27):15068–15078

    Article  CAS  Google Scholar 

  21. Muhulet A, Miculescu F, Voicu SI, Schütt F, Thakur VK, Mishra YK (2018) Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications. Mater Today Energy 9:154–186

    Article  Google Scholar 

  22. Sinha A, Dhanjai, Tan B, Huang YJ, Zhao HM, Dang XM, Chen JP, Jain R (2018) MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: a review. TrAC Trends Anal Chem 102:75–90

    Article  CAS  Google Scholar 

  23. Subash VetriSelvi S, Prasannan A, Chen SM, Vadivelmurugan A, Tsai HC, Lai JY (2021) (just accepted). Glutathione and cystamine functionalized MoS2 core-shell nanoparticles for enhanced electrochemical detection of doxorubicin. Microchim Acta 188(2):35. https://doi.org/10.1007/s00604-020-04642-8

    Article  CAS  Google Scholar 

  24. Wang YH, Huang KJ, Wu X (2017) Recent advances in transition-metal dichalcogenides based electrochemical biosensors: a review. Biosens Bioelectron 97:305–316

    Article  CAS  Google Scholar 

  25. Thanh TD, Chuong ND, Hien HV, Kshetri T, Tuan Kim NH, Lee JH (2018) Recent advances in two-dimensional transition metal dichalcogenides-graphene heterostructured materials for electrochemical applications. Prog Mater Sci 96:51–85

    Article  CAS  Google Scholar 

  26. Xia DD, Gong F, Pei X, Wang W, Li H, Zeng W, Wu M, Papavassiliou DV (2018) Molybdenum and tungsten disulfides based nanocomposite films for energy storage and conversion: a review. Chem Eng J 348:908–928

    Article  CAS  Google Scholar 

  27. Li Z, Wong SL (2017) Functionalization of 2D transition metal dichalcogenides for biomedical applications. Mater Sci Eng C 70:1095–1106

    Article  CAS  Google Scholar 

  28. Sarkar D, Liu W, Xie X, Anselmo AC, Mitragotri S, Banerjee K (2014) MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8(4):3992–4003

    Article  CAS  Google Scholar 

  29. Naqvi SM, Gansau J, Buckley CT (2018) Priming and cryopreservation of microencapsulated marrow stromal cells as a strategy for intervertebral disc regeneration. Biomed Mater 13(3):034106

    Article  Google Scholar 

  30. Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119(1):5–24

    Article  CAS  Google Scholar 

  31. Yang CH, Wang MX, Haider H, Yang JH, Sun JY, Chen YM, Zhou JX, Suo ZG (2013) Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl Mater Interfaces 5(21):10418–10422

    Article  CAS  Google Scholar 

  32. Lee C, Shin J, Lee JS, Byun E, Ryu JH, Um SH, Kim D, Lee H, Cho S (2013) Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromolecules. 14:2004–2013

    Article  CAS  Google Scholar 

  33. Bagoji AM, Patil SM, Nandibewoor ST (2016) Electroanalysis of cardio-selective betaadrenoreceptor blocking agent acebutolol by disposable graphite pencil electrodes with detailed redox mechanism. Cogent Chem 2:1172393

    Article  Google Scholar 

  34. Bagoji AM, Nandibewoor ST (2016) Electrocatalytic redox behavior of graphene films towards acebutolol hydrochloride determination in real samples. New J Chem 40:3763–3772

    Article  CAS  Google Scholar 

  35. Yamuna A, Sundaresan P, Chen SM, Sayed SRM, Chen TW, Rwei SP, Liu X (2019) Electrochemical determination of acebutolol on the electrochemically pretreated screen-printed carbon electrode. Int J Electrochem Sci 14:6168–6178

    Article  CAS  Google Scholar 

  36. Yamuna A, Sundaresan P, Chen SM (2019) Ethylcellulose assisted exfoliation of graphite by the ultrasound emulsification: an application in electrochemical acebutolol sensor. Ultrason Sonochem 59:104720

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po-Da Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1649 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CY., Prasannan, A., Lincy, V. et al. Highly exfoliated functionalized MoS2 with sodium alginate-polydopamine conjugates for electrochemical sensing of cardio-selective β-blocker by voltammetric methods. Microchim Acta 188, 103 (2021). https://doi.org/10.1007/s00604-021-04717-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04717-0

Keywords

Navigation