Skip to main content
Log in

Fluorescence “turn-on” of silicon-containing nanoparticles for the determination of resorcinol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorescent nanosensor based on silicon-containing nanoparticles (Si CNPs) with green fluorescence (FL) was prepared by one-step method. The prepared Si CNPs emitted green FL at 470 nm under the excitation at 350 nm. The FL signal of Si CNPs reveals an obvious enhancement in the presence of resorcinol (RC), due to the passivation of surface trap states of Si CNPs via the binding of OH group of RC with the NH group of Si CNPs, which allowed the formation of new radiative electron-hole recombination centers. This was confirmed by some analytical experiments performed on zeta potential, FL lifetime steady state, and the FTIR spectra. Most importantly, this nanosensor could selectively determine RC with high sensitivity and without interference from hydroquinone (HQ) and catechol (CT) as RC isomers. RC was detected in the linear range 0.05–40 μM, with a detection limit of 0.012 μM. The synthesized nanosensor was applied to the determination of RC in fresh fruit juice and water samples. The collected results confirmed the feasibility of our approach with high accuracy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tian F, Li H, Li M, Li C, Lei Y, Yang B (2017) Synthesis of one-dimensional poly(3,4-ethylenedioxythiophene)-graphene composites for the simultaneous detection of hydroquinone, catechol, resorcinol, and nitrite. Synth Met 226:148–156. https://doi.org/10.1016/j.synthmet.2017.02.016

    Article  CAS  Google Scholar 

  2. Nsanzamahoro S, Mutuyimana FP, Han Y, Ma S, Na M, Liu J, Ma Y, Ren C, Chen H, Chen X (2019) Highly selective and sensitive detection of catechol by one step synthesized highly fluorescent and water-soluble silicon nanoparticles. Sensors Actuators B Chem 281:849–856. https://doi.org/10.1016/j.snb.2018.11.016

    Article  CAS  Google Scholar 

  3. Zhang H, Bo X, Guo L (2015) Electrochemical preparation of porous graphene and its electrochemical application in the simultaneous determination of hydroquinone, catechol, and resorcinol. Sensors Actuators B Chem 220:919–926. https://doi.org/10.1016/j.snb.2015.06.035

    Article  CAS  Google Scholar 

  4. Wu H-P, Cheng T-L, Tseng W-L (2007) Phosphate-modified TiO2 nanoparticles for selective detection of dopamine, levodopa, adrenaline, and catechol based on fluorescence quenching. Langmuir 23(14):7880–7885. https://doi.org/10.1021/la700555y

    Article  CAS  PubMed  Google Scholar 

  5. Zargar B, Hatamie A (2012) Colorimetric determination of resorcinol based on localized surface plasmon resonance of silver nanoparticles. Analyst 137(22):5334–5338. https://doi.org/10.1039/c2an35504c

    Article  CAS  PubMed  Google Scholar 

  6. Zhang W, Zheng J, Lin Z, Zhong L, Shi J, Wei C, Zhang H, Hao A, Hu S (2015) Highly sensitive simultaneous electrochemical determination of hydroquinone, catechol and resorcinol based on carbon dot/reduced graphene oxide composite modified electrodes. Anal Methods 7(15):6089–6094. https://doi.org/10.1039/c5ay00848d

    Article  CAS  Google Scholar 

  7. Ding Y-P, Liu W-L, Wu Q-S, Wang X-G (2005) Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry. J Electroanal Chem 575(2):275–280. https://doi.org/10.1016/j.jelechem.2004.09.020

    Article  CAS  Google Scholar 

  8. (2010) Scientific opinion on the use of resorcinol as a food additive. EFSA J 8(1). https://doi.org/10.2903/j.efsa.2010.1411

  9. Erogul S, Bas SZ, Ozmen M, Yildiz S (2015) A new electrochemical sensor based on Fe3O4 functionalized graphene oxide-gold nanoparticle composite film for simultaneous determination of catechol and hydroquinone. Electrochim Acta 186:302–313. https://doi.org/10.1016/j.electacta.2015.10.174

    Article  CAS  Google Scholar 

  10. Yin H, Zhang Q, Zhou Y, Ma Q, Liu T, Zhu L, Ai S (2011) Electrochemical behavior of catechol, resorcinol and hydroquinone at graphene–chitosan composite film modified glassy carbon electrode and their simultaneous determination in water samples. Electrochim Acta 56(6):2748–2753. https://doi.org/10.1016/j.electacta.2010.12.060

    Article  CAS  Google Scholar 

  11. Ge C, Li H, Li M, Li C, Wu X, Yang B (2015) Synthesis of a ZnO nanorod/CVD graphene composite for simultaneous sensing of dihydroxybenzene isomers. Carbon 95:1–9. https://doi.org/10.1016/j.carbon.2015.08.006

    Article  CAS  Google Scholar 

  12. Wei C, Huang Q, Hu S, Zhang H, Zhang W, Wang Z, Zhu M, Dai P, Huang L (2014) Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at Nafion/multi-walled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode. Electrochim Acta 149:237–244. https://doi.org/10.1016/j.electacta.2014.10.051

    Article  CAS  Google Scholar 

  13. Chen Y, Liu X, Zhang S, Yang L, Liu M, Zhang Y, Yao S (2017) Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au-Pd nanoflower/reduced graphene oxide nanocomposite. Electrochim Acta 231:677–685. https://doi.org/10.1016/j.electacta.2017.02.060

    Article  CAS  Google Scholar 

  14. Mihaljica S, Radulovi D, Trbojevi J (2004) Determination of lercanidipine hydrochloride and its impurities in tablets. Chromatographia 61(1–2):25–29. https://doi.org/10.1365/s10337-004-0465-8

    Article  CAS  Google Scholar 

  15. Cui H, Zhang Q, Myint A, Ge X, Liu L (2006) Chemiluminescence of cerium(IV)–rhodamine 6G–phenolic compound system. J Photochem Photobiol A Chem 181(2–3):238–245. https://doi.org/10.1016/j.jphotochem.2005.12.003

    Article  CAS  Google Scholar 

  16. Pistonesi MF, Di Nezio MS, Centurion ME, Palomeque ME, Lista AG, Fernandez Band BS (2006) Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS). Talanta 69(5):1265–1268. https://doi.org/10.1016/j.talanta.2005.12.050

    Article  CAS  PubMed  Google Scholar 

  17. Hassan KM, Hathoot AA, Abo oura MF, Azzem MA (2018) Simultaneous and selective electrochemical determination of hydroquinone, catechol and resorcinol at poly(1,5-diaminonaphthalene)/glassy carbon-modified electrode in different media. RSC Adv 8(12):6346–6355. https://doi.org/10.1039/c7ra13665j

    Article  CAS  Google Scholar 

  18. Zhang Z, Sha C, Liu A, Zhang Z, Xu D (2015) Highly selective detection of Cr(VI) in water matrix by a simple 1,8-naphthalimide-based turn-on fluorescent sensor. J Fluoresc 25(2):335–340. https://doi.org/10.1007/s10895-015-1514-4

    Article  CAS  PubMed  Google Scholar 

  19. Das P, Saha A, Maity AR, Ray SC, Jana NR (2013) Silicon nanoparticle based fluorescent biological label via low temperature thermal degradation of chloroalkylsilane. Nanoscale 5(13):5732–5737. https://doi.org/10.1039/c3nr00932g

    Article  CAS  PubMed  Google Scholar 

  20. Song B, He Y (2019) Fluorescent silicon nanomaterials: from synthesis to functionalization and application. Nano Today 26:149–163. https://doi.org/10.1016/j.nantod.2019.03.005

    Article  CAS  Google Scholar 

  21. Ma SD, Chen YL, Feng J, Liu JJ, Zuo XW, Chen XG (2016) One-step synthesis of water-dispersible and biocompatible silicon nanoparticles for selective heparin sensing and cell imaging. Anal Chem 88(21):10474–10481. https://doi.org/10.1021/acs.analchem.6b02448

    Article  CAS  PubMed  Google Scholar 

  22. Na M, Chen Y, Han Y, Ma S, Liu J, Chen X (2019) Determination of potassium ferrocyanide in table salt and salted food using a water-soluble fluorescent silicon quantum dots. Food Chem 288:248–255. https://doi.org/10.1016/j.foodchem.2019.02.111

    Article  CAS  PubMed  Google Scholar 

  23. Han Y, Chen Y, Feng J, Liu J, Ma S, Chen X (2017) One-pot synthesis of fluorescent silicon nanoparticles for sensitive and selective determination of 2,4,6-trinitrophenol in aqueous solution. Anal Chem 89(5):3001–3008. https://doi.org/10.1021/acs.analchem.6b04509

    Article  CAS  PubMed  Google Scholar 

  24. Ma S, Yue T, Xiao X, Cheng H, Zhao D (2018) A proof of concept study of preparing ultra bright silicon quantum dots based on synergistic effect of reductants. J Lumin 201:77–84. https://doi.org/10.1016/j.jlumin.2018.04.006

    Article  CAS  Google Scholar 

  25. Zhong Y, Song B, Shen X, Guo D, He Y (2019) Fluorescein sodium ligand-modified silicon nanoparticles produce ultrahigh fluorescence with robust pH- and photo-stability. Chem Commun (Camb) 55(3):365–368. https://doi.org/10.1039/c8cc07340f

    Article  CAS  Google Scholar 

  26. Oliinyk BV, Korytko D, Lysenko V, Alekseev S (2019) Are fluorescent silicon nanoparticles formed in a one-pot aqueous synthesis? Chem Mater 31(18):7167–7172. https://doi.org/10.1021/acs.chemmater.9b01067

    Article  CAS  Google Scholar 

  27. Nsanzamahoro S, Cheng W, Mutuyimana FP, Li L, Wang W, Ren C, Yi T, Chen H, Chen X (2020) Target triggered fluorescence “turn-off” of silicon nanoparticles for cobalt detection and cell imaging with high sensitivity and selectivity. Talanta 210:120636. https://doi.org/10.1016/j.talanta.2019.120636

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Wang Q, Guo S, Jia P, Shui Y, Yao S, Huang C, Zhang M, Wang L (2018) Highly selective and sensitive fluorescence detection of hydroquinone using novel silicon quantum dots. Sensors Actuators B Chem 275:415–421. https://doi.org/10.1016/j.snb.2018.08.073

    Article  CAS  Google Scholar 

  29. Liu Y, Duan W, Song W, Liu J, Ren C, Wu J, Liu D, Chen H (2017) Red emission B, N, S-co-doped carbon dots for colorimetric and fluorescent dual mode detection of Fe(3+) ions in complex biological fluids and living cells. ACS Appl Mater Interfaces 9(14):12663–12672. https://doi.org/10.1021/acsami.6b15746

    Article  CAS  PubMed  Google Scholar 

  30. Liu J, Chen Y, Wang W, Feng J, Liang M, Ma S, Chen X (2016) “Switch-on” fluorescent sensing of ascorbic acid in food samples based on carbon quantum dots-MnO2 probe. J Agric Food Chem 64(1):371–380. https://doi.org/10.1021/acs.jafc.5b05726

    Article  CAS  PubMed  Google Scholar 

  31. Han Y, Chen Y, Liu J, Niu X, Ma Y, Ma S, Chen X (2018) Room-temperature synthesis of yellow-emitting fluorescent silicon nanoparticles for sensitive and selective determination of crystal violet in fish tissues. Sensors Actuators B Chem 263:508–516. https://doi.org/10.1016/j.snb.2018.02.163

    Article  CAS  Google Scholar 

  32. Pawar SP, Gore AH, Walekar LS, Anbhule PV, Patil SR, Kolekar GB (2015) Turn-on fluorescence probe for selective and sensitive detection of d-penicillamine by CdS quantum dots in aqueous media: application to pharmaceutical formulation. Sensors Actuators B Chem 209:911–918. https://doi.org/10.1016/j.snb.2014.12.064

    Article  CAS  Google Scholar 

  33. Wang GL, Dong YM, Yang HX, Li ZJ (2011) Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots. Talanta 83(3):943–947. https://doi.org/10.1016/j.talanta.2010.10.047

    Article  CAS  PubMed  Google Scholar 

  34. Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74(19):5132–5138. https://doi.org/10.1021/ac0258251

    Article  CAS  PubMed  Google Scholar 

  35. Lu Q, Huang T, Zhou J, Zeng Y, Wu C, Liu M, Li H, Zhang Y, Yao S (2021) Limitation-induced fluorescence enhancement of carbon nanoparticles and their application for glucose detection. Spectrochim Acta A Mol Biomol Spectrosc 244:118893. https://doi.org/10.1016/j.saa.2020.118893

    Article  CAS  PubMed  Google Scholar 

  36. Dey S, Halder S, Mukherjee A, Ghosh K, Roy P (2015) Development of highly selective chemosensor for Al3+: effect of substituent and biological application. Sensors Actuators B Chem 215:196–205. https://doi.org/10.1016/j.snb.2015.03.060

    Article  CAS  Google Scholar 

  37. Wu J, Sheng R, Liu W, Wang P, Zhang H, Ma J (2012) Fluorescent sensors based on controllable conformational change for discrimination of Zn2+ over Cd2+. Tetrahedron 68(27–28):5458–5463. https://doi.org/10.1016/j.tet.2012.04.090

    Article  CAS  Google Scholar 

  38. Liu Z, Xu H, Sheng L, Chen S, Huang D, Liu J (2016) A highly selective colorimetric and fluorescent chemosensor for Al(III) based-on simple naphthol in aqueous solution. Spectrochim Acta A Mol Biomol Spectrosc 157:6–10. https://doi.org/10.1016/j.saa.2015.12.004

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors received financial support from the National Natural Science Foundation of China (Nos. 21705156 and 81673325), the CAS Pioneer Hundred Talents Program, and the Chinese Academy of Sciences-the World Academy of Sciences (CAS-TWAS) President’s Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Ping Shi or Jun-Li Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1612 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nsanzamahoro, S., Zhang, Y., Wang, WF. et al. Fluorescence “turn-on” of silicon-containing nanoparticles for the determination of resorcinol. Microchim Acta 188, 46 (2021). https://doi.org/10.1007/s00604-021-04700-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04700-9

Keywords

Navigation