Skip to main content
Log in

Molybdenum disulfide–hypercrosslinked polymer composite as an adsorbent for determination of polycyclic aromatic hydrocarbons in environmental water coupled with HPLC–FLD

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A composite was synthesized from two-dimensional molybdenum disulfide (MoS2) nanosheets and hypercrosslinked polymers (HCP), and the composite was characterized by infrared spectroscopy, scanning electron microscopy, and specific surface area. The fluffy and porous structure and multiple adsorption sites (π-interaction, static electricity, hydrogen bonding) make it ideal for use as an adsorbent. A pipette tip solid-phase extraction with the composite as the adsorbent combined with HPLC–FLD was developed to determine trace amounts of polycyclic aromatic hydrocarbons (phenanthrene, anthracene, fluoranthene, pyrene, benzo(α)anthracene) in environmental water. Under optimal extraction conditions, the method has a wide linear range (0.5–100 ng mL−1) and low limit of detection (0.024–0.099 ng mL−1), and the recoveries of PAHs from spiked environmental water were 73.8% to 123.6% (relative standard deviation ≤ 6.7%, n = 3).

Schematic representation of a three-dimensional molybdenum disulfide–ethylenediamine–hypercrosslinked polymer composite (MoS2–EDA–HCP) using pipette tip solid-phase extraction adsorbent for extracting trace levels of polycyclic aromatic hydrocarbons (PAHs) prior to HPLC–FLD. HCP, hypercrosslinked polymer; MoS2, molybdenum disulfide; EDA, ethylenediamine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15. https://doi.org/10.1016/j.jhazmat.2009.03.137

    Article  CAS  PubMed  Google Scholar 

  2. Aagaard K, Suter M, Hu M, Thompson D, Moorthy B (2018) 945: Linking environmental exposures to polycyclic aromatic hydrocarbons (PAHs) and spontaneous preterm birth (sPTB). Am J Obstet Gynecol 218: S560. https://doi.org/10.1016/j.ajog.2017.11.432

  3. Zhang Y, Zhang L, Huang Z, Li Y, Li J, Wu N, He J, Zhang Z, Liu Y, Niu Z (2019) Pollution of polycyclic aromatic hydrocarbons (PAHs) in drinking water of China: composition, distribution and influencing factors. Ecotoxicol Environ Saf 177:108–116. https://doi.org/10.1016/j.ecoenv.2019.03.119

    Article  CAS  PubMed  Google Scholar 

  4. Oranuba E, Deng H, Peng J, Dawsey SM, Kamangar F (2019) Polycyclic aromatic hydrocarbons as a potential source of carcinogenicity of mate. J Environ Sci Health Part C: Environ Carcinog Ecotoxicol Rev 37:26–41. https://doi.org/10.1080/10590501.2019.1555323

    Article  CAS  Google Scholar 

  5. Zhang X, Zang XH, Wang JT, Wang C, Wu QH, Wang Z (2015) Porous carbon derived from aluminum-based metal organic framework as a fiber coating for the solid-phase microextraction of polycyclic aromatic hydrocarbons from water and soil. Microchim Acta 182:2353–2359. https://doi.org/10.1007/s00604-015-1566-9

    Article  CAS  Google Scholar 

  6. Cabeza Y, Candela L, Ronen D, Teijon G (2012) Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain). J Hazard Mater 239:32–39. https://doi.org/10.1016/j.jhazmat.2012.07.032

    Article  CAS  PubMed  Google Scholar 

  7. Xiang N, Jiang C, Yang T, Li P, Wang H, Xie Y, Li S, Zhou H, Diao X (2018) Occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in seawater, sediments and corals from Hainan Island, China. Ecotoxicol Environ Saf 152:8–15. https://doi.org/10.1016/j.ecoenv.2018.01.006

    Article  CAS  PubMed  Google Scholar 

  8. Itoh N, Numata M, Aoyagi Y, Yarita T (2008) Comparison of low-level polycyclic aromatic hydrocarbons in sediment revealed by Soxhlet extraction, microwave-assisted extraction, and pressurized liquid extraction. Anal Chim Acta 612:44–52. https://doi.org/10.1016/j.aca.2008.02.012

    Article  CAS  PubMed  Google Scholar 

  9. Wu S, Yu W (2012) Liquid–liquid extraction of polycyclic aromatic hydrocarbons in four different edible oils from China. Food Chem 134:597–601. https://doi.org/10.1016/j.foodchem.2012.02.155

    Article  CAS  Google Scholar 

  10. Amiri A, Ghaemi F, Maleki B (2019) Hybrid nanocomposites prepared from a metal-organic framework of type MOF-199(Cu) and graphene or fullerene as sorbents for dispersive solid phase extraction of polycyclic aromatic hydrocarbons. Microchim Acta 186(3):131–138. https://doi.org/10.1007/s00604-019-3246-7

    Article  CAS  Google Scholar 

  11. Yang X, Wang J, Wang W, Zhang S, Wang C, Zhou J, Wang Z (2019) Solid phase microextraction of polycyclic aromatic hydrocarbons by using an etched stainless-steel fiber coated with a covalent organic framework. Microchim Acta 186:145–152. https://doi.org/10.1007/s00604-019-3258-3

    Article  CAS  Google Scholar 

  12. Moradi E, Ebrahimzadeh H, Mehrani Z (2019) Electrospun acrylonitrile butadiene styrene nanofiber film as an efficient nanosorbent for head space thin film microextraction of polycyclic aromatic hydrocarbons from water and urine samples. Talanta 205:120080. https://doi.org/10.1016/j.talanta.2019.06.080

    Article  CAS  PubMed  Google Scholar 

  13. Fan C, Cao X, Han T, Pei H, Hu G, Wang W, Qian C (2019) Selective microextraction of polycyclic aromatic hydrocarbons using a hydrophobic deep eutectic solvent composed with an iron oxide-based nanoferrofluid. Microchim Acta 186(8):560. https://doi.org/10.1007/s00604-019-3651-y

    Article  CAS  Google Scholar 

  14. Sun N, Han Y, Yan H, Song Y (2014) A self-assembly pipette tip graphene solid-phase extraction coupled with liquid chromatography for the determination of three sulfonamides in environmental water. Anal Chim Acta 810:25–31. https://doi.org/10.1016/j.aca.2013.12.013

    Article  CAS  PubMed  Google Scholar 

  15. Crisafully R, Milhome MAL, Cavalcante RM, Silveira ER, Keukeleire DD, Nascimento RF (2008) Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresour Technol 99:4515–4519. https://doi.org/10.1016/j.biortech.2007.08.041

    Article  CAS  PubMed  Google Scholar 

  16. Lalvani SB, Wiltoski T, Hubner A, Weston A, Mandich N (1998) Removal of hexavalent chromium and metal cations by a selective and novel carbon adsorbent. Carbon 36:1219–1226. https://doi.org/10.1016/S0008-6223(98)00102-X

    Article  CAS  Google Scholar 

  17. Yang K, Zhu L, Xing B (2006) Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 40:855–1861. https://doi.org/10.1021/es052208w

    Article  CAS  Google Scholar 

  18. Abolghasemi MM, Yousefi V, Rafiee E (2014) Polyoxotungstate nanoclusters supported on silica as an efficient solid-phase microextraction fiber of polycyclic aromatic hydrocarbons. Microchim Acta 181:1807–1814. https://doi.org/10.1007/s00604-014-1239-0

    Article  CAS  Google Scholar 

  19. Lv Y, Lin Z, Svec F (2012) Hypercrosslinked large surface area porous polymer monoliths for hydrophilic interaction liquid chromatography of small molecules featuring zwitterionic functionalities attached to gold nanoparticles held in layered structure. Anal Chem 84:8457–8460. https://doi.org/10.1021/ac302438m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang J, Turner SR (2018) Hypercrosslinked polymers: a review. Polym Rev 58:1–41. https://doi.org/10.1080/15583724.2017.1344703

    Article  CAS  Google Scholar 

  21. Hirsch A, Hauke F (2018) Post-graphene 2D chemistry: the emerging field of molybdenum disulfide and black phosphorus functionalization. Angew Chem Int Ed 57:4338–4354. https://doi.org/10.1002/anie.201708211

    Article  CAS  Google Scholar 

  22. Wang T, Du K, Liu W, Zhang J, Li M (2015) Electrochemical sensors based on molybdenum disulfide nanomaterials. Electroanalysis 27:2091–2097. https://doi.org/10.1002/elan.201500117

    Article  CAS  Google Scholar 

  23. Liu J, Yang Y, Bai J, Wen H, Chen F, Wang B (2018) Hyper-cross-linked porous MoS2–cyclodextrin-polymer frameworks: durable removal of aromatic phenolic micropollutant from water. Anal Chem 90:3621–3627. https://doi.org/10.1021/acs.analchem.8b00239

    Article  CAS  PubMed  Google Scholar 

  24. Wang X, Li H, Huang J (2017) Adsorption of p-chlorophenol on three amino-modified hyper-cross-linked resins. J Colloid Interface Sci 505:585–592. https://doi.org/10.1016/j.jcis.2017.06.053

    Article  CAS  PubMed  Google Scholar 

  25. Kuang W, Li H, Huang J, Liu YN (2016) Tunable porosity and polarity of the polar hyper-cross-linked resins and the enhanced adsorption toward phenol. Ind Eng Chem Res 55:12213–12221. https://doi.org/10.1021/acs.iecr.6b03320

    Article  CAS  Google Scholar 

  26. Yuan YN, Jiao X, Han YH, Bai L, Liu H, Qiao F, Yan HY (2017) One-pot synthesis of ethylenediamine-connected graphene/carbon nanotube composite material for isolation of clenbuterol from pork. Food Chem 230:154–163. https://doi.org/10.1016/j.foodchem.2017.03.012

    Article  CAS  PubMed  Google Scholar 

  27. Xie Y, Wang M, Chen X, Wang S, Han D, Han Y, Yan H (2019) 3-Aminophenol-glyoxylic acid resin for the determination of triazine herbicides in tomatoes. Anal Chim Acta 1060:122–133. https://doi.org/10.1016/j.aca.2019.01.062

    Article  CAS  Google Scholar 

  28. Chaudhary N, Khanuja M, Islam SS (2018) Hydrothermal synthesis of MoS2 nanosheets for multiple wavelength optical sensing applications. Sens Actuators A 277:190–198. https://doi.org/10.1016/j.sna.2018.05.008

    Article  CAS  Google Scholar 

  29. Wei AL, Liu HY, Wang FQ, Li XY, Yan HY (2016) Fabrication of nanodiamond-based composite monolithic column and its application in separation of small molecules. J Appl Polym Sci 133:1–7. https://doi.org/10.1002/app.43776

    Article  CAS  Google Scholar 

  30. Mosquera MJ, Bejarano M, Rosa-Fox N, Esquivias L (2003) Producing crack-free colloid-polymer hybrid gels by tailoring porosity. Langmuir 19:951–957. https://doi.org/10.1021/la0265981

    Article  CAS  Google Scholar 

  31. Asadi M, Shahabuddin S, Mollahosseini A, Kaur J, Saidur R (2018) Electrospun magnetic zeolite/polyacrylonitrile nanofibers for extraction of PAHs from waste water: optimized with central composite design. J Inorg Organomet Polym Mater 29:1057–1066. https://doi.org/10.1007/s10904-018-1027-0

    Article  CAS  Google Scholar 

  32. Mauri-Aucejo A, Amorós P, Moragues A, Guillem C, Belenguer-Sapiña C (2016) Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples. Talanta 156:95–103. https://doi.org/10.1016/j.talanta.2016.05.011

    Article  CAS  PubMed  Google Scholar 

  33. Chen X, Zhang C, Wang D, Li J, Qian J, Xie B, Shi X (2017) Synthesis of Fe3O4@HKUST-1-C18 magnetic composites for magnetic solid phase extraction of PAHs in environmental water samples. Chin J Anal Lab 36:182–188. https://doi.org/10.13595/j.cnki.issn1000-0720.2017.0041

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (81803287), the Natural Science Foundation of Hebei Province (B2018201270), and the Post-graduate’s Innovation Fund Project of Hebei University (hbu2019ss072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dandan Han or Hongyuan Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 940 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Han, D., Wang, M. et al. Molybdenum disulfide–hypercrosslinked polymer composite as an adsorbent for determination of polycyclic aromatic hydrocarbons in environmental water coupled with HPLC–FLD. Microchim Acta 187, 242 (2020). https://doi.org/10.1007/s00604-020-4220-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4220-0

Keywords

Navigation