Skip to main content
Log in

Electrochemical synthesis of multilayered PEDOT/PEDOT-SH/Au nanocomposites for electrochemical sensing of nitrite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A multilayered film of poly(3,4-ethylenedioxythiophene)/poly(thiomethyl 3,4- ethylenedioxythiophene)/gold nanoparticle (PEDOT/PEDOT-SH/Au) nanocomposites was successfully synthesized on indium tin oxide (ITO) and glassy carbon electrode (GCE) via an electrochemical technique. The structure and morphology of the composite was characterized by FT-IR, UV-vis, EDS, XPS, and SEM analyses. The prepared multilayered PEDOT/PEDOT-SH/Au nanocomposite was used for the electrochemical catalytic oxidation of nitrite by amperometry. The results showed that the microstructures of PEDOT/PEDOT-SH/Au nanocomposites are not strongly dependent on the substrate. Fibrous PEDOT as hard template absorbed EDOT-SH on it to form porous PEDOT/PEDOT-SH. Porous structure had the advantages of large specific surface area and high porosity for nitrite ion adsorption. The thiol group in PEDOT/PEDOT-SH stabilized Au nanoparticles (NPs) effectively through Au-S bond and allowed Au NPs to have high dispersion and excellent electrocatalytic activity. The PEDOT/PEDOT-SH/Au composite prepared on GCE had a good performance in its electrochemical response to nitrite ions. PEDOT/PEDOT-SH/Au/GCE displayed a low oxidation potential (0.74 V), a fast response time (< 3 s), a low detection limit (0.051 μM), two linear ranges (0.15–1 mM and 1–16 mM), good sensitivity (0.301 μA μM−1 cm−2 and 0.133 μA μM−1 cm−2) with good reproducibility, stability, and selectivity.

Schematic representation of the preparation process of the nitrite ion electrochemical sensor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Manassaram DM, Backer LC, Moll DM (2006) A review of nitrates in drinking water: maternal exposure and adverse reproductive and developmental outcomes. Environ Health Perspect 114:320–327

    Article  CAS  Google Scholar 

  2. Chen Z, Zhang Z, Qu C, Pan D, Chen L (2012) Highly sensitive label-free colorimetric sensing of nitrite based on etching of gold nanorods. Analyst 137:5197–5200

    Article  CAS  Google Scholar 

  3. Parsaei M, Asadi Z, Khodadoust S (2015) A sensitive electrochemical sensor for rapid and selective determination of nitrite ion in water samples using modified carbon paste electrode with a newly synthesized cobalt(II)-Schiff base complex and magnetite nanospheres. Sensors Actuators B Chem 220:1131–1138

    Article  CAS  Google Scholar 

  4. Adarsh N, Shanmugasundaram M, Ramaiah D (2013) Efficient reaction based colorimetric probe for sensitive detection, quantification, and on-site analysis of nitrite ions in natural water resources. Anal Chem 85:10008–10012

    Article  CAS  Google Scholar 

  5. Lin Z, Xue W, Chen H, Lin JM (2011) Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal Chem 83:8245–8251

    Article  CAS  Google Scholar 

  6. Morcos E, Wiklund NP (2015) Nitrite and nitrate measurements in human urine by capillary electrophoresis. Electrophoresis 22:2763–2768

    Article  Google Scholar 

  7. Kaku S, Tanaka M, Muramatsu M, Otomo S (2010) Determination of nitrite by high-performance liquid chromatography system with electrochemical detector: measurement of nitric oxide synthase activity in rat cerebellum cytosol. Biomed Chromatogr 8:14–18

    Article  Google Scholar 

  8. Zhang H, Kang S, Wang G, Zhang Y, Zhao H (2016) Fluorescence determination of nitrite in water using prawn-shell derived nitrogen-doped carbon nanodots as fluorophores. ACS Sensors 7:875–881

    Google Scholar 

  9. He ZK, Fuhrmann B, Spohn U (2000) Precise and sensitive determination of nitrite by coulometric backtitration under flow conditions. Fresenius J Anal Chem 367:264

    Article  CAS  Google Scholar 

  10. Zuo J, Zhang Z, Jiao J, Pang H, Zhang D, Ma H (2016) Sensitive and selective nitrite sensor based on phosphovanadomolybdates H6[PMo9V3O40], poly(3,4-ethylenedioxythiophene) and Au nanoparticles. Sensors Actuators B Chem 236:418–424

    Article  CAS  Google Scholar 

  11. Li SS, Hu Y-Y, Wang A-J, Weng X, Chen J-R, Feng J-J (2015) Simple synthesis of worm-like Au–Pd nanostructures supported on reduced graphene oxide for highly sensitive detection of nitrite. Sensors Actuators B Chem 208:468–474

    Article  CAS  Google Scholar 

  12. Sheng Q, Liu D, Zheng J (2017) A nonenzymatic electrochemical nitrite sensor based on Pt nanoparticles loaded Ni(OH)2/multi-walled carbon nanotubes nanocomposites. J Electroanal Chem 796:9–16

    Article  CAS  Google Scholar 

  13. Ying W, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889–892

    Article  Google Scholar 

  14. Ko E, Tran V-K, Son SE, Hur W, Choi H, Seong GH (2019) Characterization of Au@PtNP/GO nanozyme and its application to electrochemical microfluidic devices for quantification of hydrogen peroxide. Sensors Actuators B Chem 294:166–176

    Article  CAS  Google Scholar 

  15. Goda T, Toya M, Matsumoto A, Miyahara Y (2015) Poly(3,4-ethylenedioxythiophene) bearing phosphorylcholine groups for metal-free, antibody-free, and low-impedance biosensors specific for C-reactive protein. ACS Appl Mater Interfaces 7:27440–27448

    Article  CAS  Google Scholar 

  16. Belaidi FS, Civélas A, Castagnola V, Tsopela A, Mazenq L, Gros P, Launay J, Temple-Boyer P (2015) PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 214:1–9

    Article  CAS  Google Scholar 

  17. Meng A, Yuan X, Li Z, Zhao K, Sheng L, Li Q (2019) Direct growth of 3D porous (Ni-co)3S4 nanosheets arrays on rGO-PEDOT hybrid film for high performance non-enzymatic glucose sensing. Sensors Actuators B Chem 291:9–16

    Article  CAS  Google Scholar 

  18. Kumar A, Gonçalves JM, Sukeri A, Araki K, Bertotti M (2018) Correlating surface growth of nanoporous gold with electrodeposition parameters to optimize amperometric sensing of nitrite. Sensors Actuators B Chem 263:237–247

    Article  CAS  Google Scholar 

  19. Xin Y, Ouyang Y, Feng W, Hu Y, Yang J, Wu Z (2017) Size controllable preparation of gold nanoparticles loading on graphene sheets@cerium oxide nanocomposites modified gold electrode for nonenzymatic hydrogen peroxide detection. Sensors Actuators B Chem 238:40–47

    Article  Google Scholar 

  20. Giannetto M, Mori G, Terzi F, Zanardi C, Seeber R (2011) Composite PEDOT/Au nanoparticles modified electrodes for determination of mercury at trace levels by anodic stripping voltammetry. Electroanalysis 23:456–462

    Article  CAS  Google Scholar 

  21. Li Z, Yin J, Gao C, Qiu G, Meng A, Li Q (2019) The construction of electrochemical aptasensor based on coral-like poly-aniline and Au nano-particles for the sensitive detection of prostate specific antigen. Sensors Actuators B Chem 295:93–100

    Article  CAS  Google Scholar 

  22. Lin P, Chai F, Zhang R, Xu G, Fan X, Luo X (2016) Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) doped with gold nanoparticles, and its application to nitrite sensing. Microchim Acta 183:1235–1241

    Article  CAS  Google Scholar 

  23. Fan X, Lin P, Liang S, Hui N, Zhang R, Feng J, Xu G (2017) Gold nanoclusters doped poly(3,4-ethylenedioxythiophene) for highly sensitive electrochemical sensing of nitrite. Ionics 23:997–1003

    Article  CAS  Google Scholar 

  24. Zhang O, Wen Y, Xu J, Lu L, Duan X, Yu H (2013) One-step synthesis of poly(3,4-ethylenedioxythiophene)–Au composites and their application for the detection of nitrite. Synth Met 164:47–51

    Article  CAS  Google Scholar 

  25. Salsamendi M, Marcilla R, Döbbelin M, Mecerreyes D, Pozo-Gonzalo C, Pomposo JA, Pacios R (2010) Simultaneous synthesis of gold nanoparticles and conducting poly(3,4-ethylenedioxythiophene) towards optoelectronic nanocomposites. Phys Status Solidi 205:1451–1454

    Article  Google Scholar 

  26. Xu J, Peng R, Ran Q, Xian Y, Tian Y, Jin L (2010) A highly soluble poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)/Au nanocomposite for horseradish peroxidase immobilization and biosensing. Talanta 82:1511–1515

    Article  CAS  Google Scholar 

  27. Rastgoo-Lahrood A, Martsinovich N, Lischka M, Eichhorn J, Szabelski P, Nieckarz D, Strunskus T, Das K, Schmittel M, Heckl WM (2016) From Au–thiolate chains to thioether Sierpiński triangles: the versatile surface chemistry of 1,3,5-tris(4-mercaptophenyl)benzene on Au(111). ACS Nano 10:10901

    Article  CAS  Google Scholar 

  28. Lakshmi A, Anandha Raj J, Gopu G, Arumugam P, Vedhi C (2013) Electrochemical, electrochromic behaviour and effects of supporting electrolyte on nano-thin film of poly (3,4-ethylenedioxy thiophene). Electrochim Acta 92:452–459

    Article  CAS  Google Scholar 

  29. Balog M, Rayah H, Le Derf F, Salle M (2008) A versatile building block for EDOT or PEDOT functionalization. New J Chem 32:1183–1188

    Article  CAS  Google Scholar 

  30. Ouyang L, Wei B, Kuo CC, Pathak S, Martin DC (2017) Enhanced PEDOT adhesion on solid substrates with electrografted P(EDOT-NH2). Sci Adv 3:e1600448

    Article  Google Scholar 

  31. Goda T, Toya M, Matsumoto A, Miyahara Y Poly(3,4-ethylenedioxythiophene) bearing phosphorylcholine groups for metal-free, antibody-free, and low-impedance biosensors specific for C-reactive protein. ACS Appl Mater Interfaces 7:27440–27448

  32. Aradilla D, Estrany F, Armelin E, Alemán C (2012) Ultraporous poly(3,4-ethylenedioxythiophene) for nanometric electrochemical supercapacitor. Thin Solid Films 520:4402–4409

    Article  CAS  Google Scholar 

  33. Diarisso A, Fall M, Raouafi N (2018) Elaboration of a chemical sensor based on polyaniline and sulfanilic acid diazonium salt for highly sensitive detection nitrite ions in acidified aqueous media. Environ Sci: Water Res Technol 4:1024–1034

    CAS  Google Scholar 

  34. Duan C, Wushuang B, Jianbin Z (2018) Non-enzymatic sensor based on a glassy carbon electrode modified with au nanoparticles/polyaniline/SnO2 fibrous nanocomposites for nitrite sensing. New J Chem 42:11516–11524

    Article  CAS  Google Scholar 

  35. Jiao M, Li Z, Li Y, Cui M, Luo X (2018) Poly(3,4-ethylenedioxythiophene) doped with engineered carbon quantum dots for enhanced amperometric detection of nitrite. Microchim Acta 185:249

    Article  Google Scholar 

  36. Zhao X, Li N, Jing M, Zhang Y, Wang W, Liu L, Xu Z, Liu L, Li F, Wu N (2019) Monodispersed and spherical silver nanoparticles/graphene nanocomposites from gamma-ray assisted in-situ synthesis for nitrite electrochemical sensing. Electrochim Acta 295:434–443

    Article  CAS  Google Scholar 

  37. Lu L (2019) Highly sensitive detection of nitrite at a novel electrochemical sensor based on mutually stabilized Pt nanoclusters doped CoO nanohybrid. Sensors Actuators B Chem 281:182–190

    Article  CAS  Google Scholar 

  38. Nithyayini KN, Harish MNK, Nagashree KL (2019) Electrochemical detection of nitrite at NiFe2O4 nanoparticles synthesised by solvent deficient method. Electrochim Acta 317:701–710

    Article  CAS  Google Scholar 

  39. Madhuvilakku R, Alagar S, Mariappan R, Piraman S (2020) Glassy carbon electrodes modified with reduced graphene oxide-MoS2-poly (3, 4-ethylene dioxythiophene) nanocomposites for the non-enzymatic detection of nitrite in water and milk. Anal Chim Acta 1093:93–105

    Article  CAS  Google Scholar 

  40. Annalakshmi M, Kumaravel S, Chen S-M, Balasubramanian P, Balamurugan TST (2020) A straightforward ultrasonic-assisted synthesis of zinc sulfide for supersensitive detection of carcinogenic nitrite ions in water samples. Sensors Actuators B Chem 305:127387

    Article  Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21764014, No. 21564014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruxangul Jamal or Tursun Abdiryim.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1610 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Jamal, R., Zhang, R. et al. Electrochemical synthesis of multilayered PEDOT/PEDOT-SH/Au nanocomposites for electrochemical sensing of nitrite. Microchim Acta 187, 248 (2020). https://doi.org/10.1007/s00604-020-4211-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4211-1

Keywords

Navigation