Skip to main content
Log in

Electrochemical fabrication of reduced MoS2-based portable molecular imprinting nanoprobe for selective SERS determination of theophylline

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new portable molecular imprinting polymer (MIP)-SERS nanoprobe is fabricated by a convenient electrochemical method. Single-layered MoS2 is electrochemically reduced on a screen-printed electrode as the scaffold. Functional monomers o-phenylenediamine (oPD), template theophylline (THP), and SERS-active Au nanoparticles (AuNPs) are then one-step electropolymerized on the scaffold. The morphology of the nanoprobe is found to be a three-dimensional and porous structure. The abundant AuNPs with the size of 45~50 nm are trapped within the growing MIP instead of being confined to the surface. The thickness of MIP film is calculated to 25.1 nm. The nanoprobe displays a strong SERS effect for THP using 532 nm as excitation wavelength with a detection limit (LOD) of 0.01 nM. The SERS peak intensity at 1487 cm−1 increases linearly with the concentration of THP in the range 0.1 nM to 0.1 mM. After the template is removed, the imprint-removed nanoprobe is generated for selective binding of THP. The re-binding kinetics study implies the portable MIP-SERS nanoprobe can reach the adsorption equilibrium within 8 min. This nanoprobe exhibits low SERS interference for structural analogues theobromine (THB) and caffeine (CAF). The nanoprobe was employed to THP determination in tea drink samples, with recoveries ranging from 99.0 to 102.0% and relative standard deviations of < 5.0%.

Schematic representation of a portable molecular imprinting SERS nanoprobe used for selective and sensitive theophylline recognition. The nanoprobe is fabricated by one-step electropolymerized o-phenylenediamine (oPD), theophylline, and electroreduced Au nanoparticles (AuNPs) on reduced MoS2 (rMoS2) modified screen-printed electrode (SPE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu SJ, Duan N, Shen MF, Wang J, Wang ZP (2019) Surface-enhanced Raman spectroscopic single step detection of Vibrio parahaemolyticus using gold coated polydimethylsiloxane as the active substrate and aptamer modified gold nanoparticles. Microchim Acta 186:401–409. https://doi.org/10.1007/s00604-019-3499-1

    Article  CAS  Google Scholar 

  2. Li DW, Zhai WL, Li YT, Long YT (2014) Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim Acta 181:23–43. https://doi.org/10.1007/s00604-013-1115-3

    Article  CAS  Google Scholar 

  3. Zhang Y, Zhao SJ, Zheng JK, He LL (2017) Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization. TrAC Trend Anal Chem 90:1–13. https://doi.org/10.1016/j.trac.2017.02.006

    Article  CAS  Google Scholar 

  4. Chen LX, Wang XY, Lu WH, Wu XQ, Li JH (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211. https://doi.org/10.1039/c6cs00061d

    Article  CAS  PubMed  Google Scholar 

  5. Wackerlig J, Schirhagl R (2016) Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: a review. Anal Chem 88:250–261. https://doi.org/10.1021/acs.analchem.5b03804

    Article  CAS  PubMed  Google Scholar 

  6. Kantarovich K, Tsarfati I, Gheber LA, Haupt K, Bar I (2009) Writing droplets of molecularly imprinted polymers by nano fountain pen and detecting their molecular interactions by surface-enhanced Raman scattering. Anal Chem 81:5686–5690. https://doi.org/10.1021/ac900418x

    Article  CAS  PubMed  Google Scholar 

  7. Kantarovich K, Tsarfati I, Gheber LA, Haupt K, Bar I (2010) Reading microdots of a molecularly imprinted polymer by surface-enhanced Raman spectroscopy. Biosens Bioelectron 26:809–814. https://doi.org/10.1016/j.bios.2010.06.018

    Article  CAS  PubMed  Google Scholar 

  8. Yan MM, She YX, Cao XL, Ma J, Chen G, Hong SH, Shao Y, Abd El-Aty AM, Wang M, Wang J (2019) A molecularly imprinted polymer with integrated gold nanoparticles for surface enhanced Raman scattering based detection of the triazine herbicides, prometryn and simetryn. Microchim Acta 186:143–152. https://doi.org/10.1007/s00604-019-3254-7

    Article  CAS  Google Scholar 

  9. Ahmad R, Griffete N, Lamouri A, Felidj N, Chehimi MM, Mangeney C (2015) Nanocomposites of gold nanoparticles @ molecularly imprinted polymers: chemistry, processing, and applications in sensors. Chem Mater 27:5464–5478. https://doi.org/10.1021/acs.chemmater.5b00138

    Article  CAS  Google Scholar 

  10. Kamra T, Chaudhary S, Xu C, Montelius L, Schnadt J, Ye L (2016) Covalent immobilization of molecularly imprinted polymer nanoparticles on a gold surface using carbodiimide coupling for chemical sensing. J Colloid Interface Sci 461:1–8. https://doi.org/10.1016/j.jcis.2015.09.009

    Article  CAS  PubMed  Google Scholar 

  11. Liu YJ, Bao JJ, Zhang L, Chao C, Guo JJ, Cheng YC, Zhu YJ, Xu GJ (2018) Ultrasensitive SERS detection of propranolol based on sandwich nanostructure of molecular imprinting polymers. Sensors Actuators B Chem 255:110–116. https://doi.org/10.1016/j.snb.2017.08.018

    Article  CAS  Google Scholar 

  12. Kamra T, Zhou TC, Montelius L, Schnadt J, Ye L (2015) Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection. Anal Chem 87:5056–5061. https://doi.org/10.1021/acs.analchem.5b00774

    Article  CAS  PubMed  Google Scholar 

  13. Ye J, Chen Y, Liu Z (2014) A boronate affinity sandwich assay: an appealing alternative to immunoassays for the determination of glycoproteins. Angew Chem Int Ed 53:10386–10389. https://doi.org/10.1002/anie.201405525

    Article  CAS  Google Scholar 

  14. Bompart M, Wilde YD, Haupt K (2010) Chemical nanosensors based on composite molecularly imprinted polymer particles and surface-enhanced Raman scattering. Adv Mater 22:2343–2348. https://doi.org/10.1002/adma.200904442

    Article  CAS  PubMed  Google Scholar 

  15. Xue JQ, Li DW, Qu LL, Long YT (2013) Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering. Anal Chim Acta 777:57–62. https://doi.org/10.1016/j.aca.2013.03.037

    Article  CAS  PubMed  Google Scholar 

  16. Chang L, Ding Y, Li X (2013) Surface molecular imprinting onto silver microspheres for surface enhanced Raman scattering applications. Biosens Bioelectron 50:106–110. https://doi.org/10.1016/j.bios.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  17. Chen SN, Li X, Zhao YY, Chang LM, Qi JY (2014) High performance surface-enhanced Raman scattering via dummy molecular imprinting onto silver microspheres. Chem Commun 50:14331–14333. https://doi.org/10.1039/c4cc06535b

    Article  CAS  Google Scholar 

  18. Riskin M, Tel-Vered R, Frasconi M, Yavo N, Willner I (2010) Stereoselective and chiroselective surface plasmon resonance (SPR) analysis of amino acids by molecularly imprinted Au-nanoparticle composites. Chem-Eur J 16:7114–7120. https://doi.org/10.1002/chem.200903215

    Article  CAS  PubMed  Google Scholar 

  19. Riskin M, Ben-Amram Y, Tel-Vered R, Chegel V, Almog J, Willner I (2011) Molecularly imprinted Au nanoparticles composites on Au surfaces for the surface plasmon resonance detection of pentaerythritol tetranitrate, nitroglycerin, and ethylene glycol dinitrate. Anal Chem 83:3082–3088. https://doi.org/10.1021/ac1033424

    Article  CAS  PubMed  Google Scholar 

  20. Yang T, Chen HY, Jing CJ, Luo SZ, Li W, Jiao K (2017) Using poly(m-aminobenzenesulfonic acid)-reduced MoS2 nanocomposite synergistic electrocatalysis for determination of dopamine. Sensors Actuators B Chem 249:451–457. https://doi.org/10.1016/j.snb.2017.04.078

    Article  CAS  Google Scholar 

  21. Liang X, Wang YS, You TT, Zhang XJ, Yang N, Wang GS, Yin PG (2017) Interfacial synthesis of a three-dimensional hierarchical MoS2-NS@Ag-NP nanocomposite as a SERS nanosensor for ultrasensitive thiram detection. Nanoscale 9:8879–8888. https://doi.org/10.1039/c7nr01891f

    Article  CAS  PubMed  Google Scholar 

  22. Wu SX, Zeng ZY, He QY, Wang ZJ, Wang SJ, Du YP, Yin ZY, Sun XP, Chen W, Zhang H (2012) Electrochemically reduced single-layer MoS2 nanosheets: characterization, properties, and sensing applications. Small 8:2264–2270. https://doi.org/10.1002/smll.201200044

    Article  CAS  PubMed  Google Scholar 

  23. Lee WWY, Silverson VAD, Mccoy CP, Donnelly RF, Bell SEJ (2014) Preaggregated Ag nanoparticles in dry swellable gel films for off-the-shelf surface-enhanced Raman spectroscopy. Anal Chem 86:8106–8113. https://doi.org/10.1021/ac501959u

    Article  CAS  PubMed  Google Scholar 

  24. Wang TC, Randviir EP, Banks CE (2014) Detection of theophylline utilising portable electrochemical sensors. Analyst 139:2000–2003. https://doi.org/10.1039/c4an00065j

    Article  CAS  PubMed  Google Scholar 

  25. Ma XY, Guo ZZ, Mao ZQ, Tang YG, Miao P (2018) Colorimetric theophylline aggregation assay using an RNA aptamer and non-crosslinking gold nanoparticles. Microchim Acta 185:33–39. https://doi.org/10.1007/s00604-017-2606-4

    Article  CAS  Google Scholar 

  26. Lou YF, Peng YB, Luo XW, Yang ZM, Wang RF, Sun DW, Li LXY, Tan YY, Huang JH, Cui L (2019) A universal aptasensing platform based on cryonase-assisted signal amplification and graphene oxide induced quenching of the fluorescence of labeled nucleic acid probes: application to the detection of theophylline and ATP. Microchim Acta 186:494–502. https://doi.org/10.1007/s00604-019-3596-1

    Article  CAS  Google Scholar 

  27. Zeng ZYZ, Yin ZY, Huang X, Li H, He QY, Lu G, Boey F, Zhang H (2011) Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem Int Ed 50:11093–11097. https://doi.org/10.1002/ange.201106004

    Article  CAS  Google Scholar 

  28. Li YT, Qu LL, Li DW, Song QX, Fathi F, Long YT (2013) Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable Ag-graphene sensor based on electrophoretic preconcentration and surface-enhanced Raman spectroscopy. Biosens Bioelectron 43:94–100. https://doi.org/10.1016/j.bios.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  29. Du D, Chen SZ, Cai J, Ta Y, Tu HY, Zhang AD (2008) Recognition of dimethoate carried by bi-layer electrodeposition of silver nanoparticles and imprinted poly-o-phenylenediamine. Electrochim Acta 53:6589–6592. https://doi.org/10.1016/j.electacta.2008.04.027

    Article  CAS  Google Scholar 

  30. Li HD, Guan HM, Dai H, Tong YJ, Zhao XN, Qi WJ, Majeed S, Xu GB (2012) An amperometric sensor for the determination of benzophenone in food packaging materials based on the electropolymerized molecularly imprinted poly-o-phenylenediamine film. Talanta 99:811–815. https://doi.org/10.1016/j.talanta.2012.07.033

    Article  CAS  PubMed  Google Scholar 

  31. Karimian N, Turner APF, Tiwari A (2014) Electrochemical evaluation of troponin T imprinted polymer receptor. Biosens Bioelectron 59:160–165. https://doi.org/10.1016/j.bios.2014.03.013

    Article  CAS  PubMed  Google Scholar 

  32. Panasyuk TL, Mirsky VM, Piletsky SA, Wolfbeis OS (1999) Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical censors. Anal Chem 71:4609–4613. https://doi.org/10.1021/ac9903196

    Article  CAS  Google Scholar 

  33. Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116. https://doi.org/10.1021/nl201874w

    Article  CAS  PubMed  Google Scholar 

  34. Spevack PA, McIntyre NS, Phys J (1993) A Raman and XPS investigation of supported molybdenum oxide thin films. 1. Calcination and reduction studies. J Phys Chem 97:11020–11030. https://doi.org/10.1021/j100144a020

    Article  CAS  Google Scholar 

  35. Malitesta C, Losito I, Zambonin PG (1999) Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors. Anal Chem 71:1366–1370. https://doi.org/10.1021/ac980674g

    Article  CAS  PubMed  Google Scholar 

  36. Liu P, Liu R, Guan G, Jiang C, Wang S, Zhang Z (2011) Surface-enhanced Raman scattering sensor for theophylline determination by molecular imprinting on silver nanoparticles. Analyst 136:4152–4158. https://doi.org/10.1039/c1an15318h

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Wang Y, Wang MC, Zhang JY, Wang QW, Li HJ (2020) A molecularly imprinted nanoprobe incorporating Cu2O@Ag nanoparticles with different morphologies for selective SERS based detection of chlorophenols. Microchim Acta 187:59–69. https://doi.org/10.1007/s00604-019-4052-y

    Article  CAS  Google Scholar 

  38. Wang ZW, Yan RX, Liao SW, Miao YR, Zhang B, Wang F, Yang HF (2018) In situ reduced silver nanoparticles embedded molecularly imprinted reusable sensor for selective and sensitive SERS detection of bisphenol A. Appl Surf Sci 457:323–331. https://doi.org/10.1016/j.apsusc.2018.06.283

    Article  CAS  Google Scholar 

  39. Alharbi O, Xu Y, Goodacre R (2015) Simultaneous multiplexed quantification of caffeine and its major metabolites theobromine and paraxanthine using surface-enhanced Raman scattering. Anal Bioanal Chem 407:8253–8261. https://doi.org/10.1007/s00216-015-9004-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zheng H, Ni D, Yu Z, Liang P, Chen H (2016) Fabrication of flower-like silver nanostructures for rapid detection of caffeine using surface enhanced Raman spectroscopy. Sensors Actuators B Chem 231:423–430. https://doi.org/10.1016/j.snb.2016.03.045

    Article  CAS  Google Scholar 

  41. Subaihi A, Xu Y, Muhamadali H, Mutter ST, Blanch EW, Ellis DI, Goodacre R (2017) Towards improved quantitative analysis using surface-enhanced Raman scattering incorporating internal isotope labelling. Anal Methods 9:6636–6644. https://doi.org/10.1039/c7ay02527k

    Article  CAS  Google Scholar 

  42. Hu R, Tang R, Xu J, Lu F (2018) Chemical nanosensors based on molecularly-imprinted polymers doped with silver nanoparticles for the rapid detection of caffeine in wastewater. Anal Chim Acta 30:176–183. https://doi.org/10.1016/j.aca.2018.06.012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thank you very much to Yi-Tao Long’s group for providing home-made SPEs.

Funding

This research was supported by the National Natural Science Foundation of China (Nos. 21707092 and 21975161), Shanghai Excellent Technology Leaders Program (No. 17XD1424900), the Science and Technology Commission of Shanghai Municipality Project (18090503800), Natural Science Foundation of Shanghai (17ZR1441700), Shanghai Education Development Foundation and Shanghai Municipal Education Commission of Shuguang Program (No. 18SG52), and Collaborative Innovation Fund of SIT (XTCX2019-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-Ting Li or Sheng Han.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary data associated with this article can be found in the online version.

ESM 1

(DOC 4477 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YT., Yang, YY., Sun, YX. et al. Electrochemical fabrication of reduced MoS2-based portable molecular imprinting nanoprobe for selective SERS determination of theophylline. Microchim Acta 187, 203 (2020). https://doi.org/10.1007/s00604-020-4201-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4201-3

Keywords

Navigation