Skip to main content
Log in

Visual paper-based sensor for the highly sensitive detection of caffeine in food and biological matrix based on CdTe-nano ZnTPyP combined with chemometrics

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Caffeine naturally occurs in tea and cocoa, which is also used as an additive in beverages and has pharmacological effects such as refreshing, antidepressant, and digestion promotion, but excessive caffeine can cause harm to the human body. In this work, based on the specific response between nano zinc 5, 10, 15, 20-tetra(4-pyridyl)-21H-23H-porphine (nano ZnTPyP)-CdTe quantum dots (QDs) and caffeine, combined with chemometrics, a visual paper-based sensor was constructed for rapid and on-site detection of caffeine. The fluorescence of QDs can be quenched by nano ZnTPyP. When caffeine is added to the system, it can pull nano ZnTPyP off the surface of the QDs to achieve fluorescence recovery through electrostatic attraction and nitrogen/zinc coordination. The detection range is 5 × 10−11~3 × 10−9 mol L−1, and the detection limit is 1.53 × 10−11 mol L−1 (R2 = 0.9990) (S/N = 3). The paper-based sensor constructed exhibits good results in real samples, such as tea water, cell culture fluid, newborn bovine serum, and human plasma. Therefore, the sensor is expected to be applied to the rapid instrument-free detection of caffeine in food and biological samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig.4

Similar content being viewed by others

References

  1. Furtado LD, Goncalves MC, Inocencio CV, Pinto EM, Martins DD, Semaan FS (2019) Electrodeposition of 4-benzenesulfonic acid onto a graphite-epoxy composite electrode for the enhanced voltammetric determination of caffeine in beverages. J Anal Methods Chem 2019:8596484–8596411. https://doi.org/10.1155/2019/8596484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kalaiyarasi J, Meenakshi S, Gopinath SC, Pandian K (2017) Mediator-free simultaneous determination of acetaminophen and caffeine using a glassy carbon electrode modified with a nanotubular clay. Microchim Acta 184(11):4485–4494. https://doi.org/10.1007/s00604-017-2483-x

    Article  CAS  Google Scholar 

  3. Shishov A, Volodina N, Nechaeva D, Gagarinova S, Bulatov A (2019) An automated homogeneous liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of caffeine in beverages. Microchem J 144:469–473. https://doi.org/10.1016/j.microc.2018.10.014

    Article  CAS  Google Scholar 

  4. Jones J, Magri R, Rios R, Jones M, Plate C, Lewis D (2011) The detection of caffeine and cotinine in umbilical cord tissue using liquid chromatography–tandem mass spectrometry. Anal Methods 3(6):1310–1315. https://doi.org/10.1039/c0ay00625d

    Article  CAS  Google Scholar 

  5. Waring WS, Laing WJ, Good AM, Malkowska AM (2009) Acute caffeine ingestion: clinical features in patients attending the emergency department and Scottish poison centre enquiries between 2000 and 2008. Scott Med J 54:3–6. https://doi.org/10.1258/rsmsmj.54.4.3

    Article  CAS  PubMed  Google Scholar 

  6. Fernando CD, Soysa P (2016) Simple isocratic method for simultaneous determination of caffeine and catechins in tea products by HPLC. SpringerPlus 5:970. https://doi.org/10.1186/s40064-016-2672-9

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang WF, Zhang YF, Zhou LL, Zhao SN, Du HF, Ma X, Zhang SS (2016) Sensitive analysis of trace caffeine in human serum by HPLC using tetraazacalix[2]arene[2]triazine-modified silica as SPE sorbent. Anal Methods 8(17):3613–3619. https://doi.org/10.1039/c6ay00594b

    Article  CAS  Google Scholar 

  8. Huang M, Gao JY, Zhai ZG, Liang QL, Wang YM, Bai YQ (2012) An HPLC-ESI-MS method for simultaneous determination of fourteen metabolites of promethazine and caffeine and its application to pharmacokinetic study of the combination therapy against motion sickness. J Pharm Biomed Anal 62:119–127. https://doi.org/10.1016/j.jpba.2011.12.033

    Article  CAS  PubMed  Google Scholar 

  9. Sun PZ, Lee WN, Zhang RC, Huang CH (2016) Degradation of DEET and caffeine under UV/chlorine and simulated sunlight/chlorine conditions. Environ Sci Technol 50:13265–13273. https://doi.org/10.1021/acs.est.6b02287

    Article  CAS  PubMed  Google Scholar 

  10. Grandke J, Oberleitner L, Resch-Genger U, Garbe LA (2013) Quality assurance in immunoassay performance—comparison of different enzyme immunoassays for the determination of caffeine in consumer products. Anal Bioanal Chem 405:1601–1611. https://doi.org/10.1007/s00216-012-6596-0

    Article  CAS  PubMed  Google Scholar 

  11. Carvalho JJ, Weller MG, Panne U, Schneider RJ (2010) A highly sensitive caffeine immunoassay based on a monoclonal antibody. Anal Bioanal Chem 396:2617–2628. https://doi.org/10.1007/s00216-010-3506-1

    Article  CAS  PubMed  Google Scholar 

  12. Belay A, Kim HK, Hwang YH (2016) Binding of caffeine with caffeic acid and chlorogenic acid using fluorescence quenching, UV/vis and FTIR spectroscopic techniques. Luminescence 31:565–572. https://doi.org/10.1002/bio.2996

    Article  CAS  PubMed  Google Scholar 

  13. Klostranec JM, Chan WCW (2010) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953–1964. https://doi.org/10.1002/adma.200500786

    Article  CAS  Google Scholar 

  14. Yin H, Truskewycz A, Cole IS (2020) Quantum dot (QD)-based probes for multiplexed determination of heavy metal ions. Microchim Acta 187:336. https://doi.org/10.1007/s00604-020-04297-5

    Article  CAS  Google Scholar 

  15. Wu P, Zhao T, Wang SL, Hou XD (2013) Semicondutor quantum dots-based metal ion probes. Nanoscale 6:43–64. https://doi.org/10.1039/c3nr04628a

    Article  CAS  PubMed  Google Scholar 

  16. Zhu Z, Li H, Xiang Y, Koh K, Hu X, Chen H (2020) Pyridinium porphyrins and AuNPs mediated bionetworks as SPR signal amplification tags for the ultrasensitive assay of brain natriuretic peptide. Microchim Acta 187(6):327–336. https://doi.org/10.1007/s00604-020-04289-5

    Article  CAS  Google Scholar 

  17. Franck B, Nonn A (1995) Novel porphyrinoids for chemistry and medicine by biomimetic syntheses. Angew Chem Int Edit 34:1795–1811. https://doi.org/10.1002/anie.199517951

    Article  CAS  Google Scholar 

  18. Ehli C, Rahman GMA, Jux N, Balbinot D, Guldi DM, Paolucci F, Marcaccio M, Paolucci D, Melle-Franco M, Zerbetto F, Campidelli S, Prato M (2006) Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids. J Am Chem Soc 128:11222–11231. https://doi.org/10.1021/ja0624974

    Article  CAS  PubMed  Google Scholar 

  19. O’Sullivan MC, Sprafke JK, Kondratuk DV, Rinfray C, Claridge TDW, Saywell A, Blunt MO, O'Shea JN, Beton PH, Malfois M (2011) Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature 469:72–75. https://doi.org/10.1038/nature09683

    Article  CAS  PubMed  Google Scholar 

  20. Tashiro K, Murafuji T, Sumimoto M, Fujitsuka M, Yamazaki S (2020) The formation mechanism of ZnTPyP fibers fabricated by a surfactant-assisted method. New J Chem 44(32):13824–13833. https://doi.org/10.1039/d0nj02829k

    Article  CAS  Google Scholar 

  21. Kazuya O, Yoshiaki K (2010) Formation of a giant supramolecular porphyrin array by self-coordination. Angew Chem Int Edit 39(22):4070–4073. https://doi.org/10.1002/1521-3773(20001117)39:22<4070::AID-ANIE4070>3.0.CO;2-C

    Article  Google Scholar 

  22. Ahmed GH, Aly SM, Usman A, Eita M, Melnikov VA, Mohammed O (2015) Quantum confinement-tunable intersystem crossing and the triplet state lifetime of cationic porphyrin-CdTe quantum dot nano-assemblies. Chem Commun 51(38):8010–8013. https://doi.org/10.1039/c5cc01542a

    Article  CAS  Google Scholar 

  23. Zhao CQ, Rehman FU, Jiang H, Jiang H, Selke M, Wang X, Liu CY (2016) Titanium dioxide-tetra sulphonatophenyl porphyrin nanocomposites for target cellular bio-imaging and treatment of rheumatoid arthritis. Sci China Chem 59(5):637–642. https://doi.org/10.1007/s11426.016-5568-1

    Article  CAS  Google Scholar 

  24. Li M, Zheng Y, Liang W, Yuan Y, Chai Y, Yuan R (2016) An ultrasensitive “on-off-on” photoelectrochemical aptasensor based on signal amplification of fullerene@CdTe quantum dots sensitized structure and efficient quenching with manganese porphyrin. Chem Commun 52:8138–8141. https://doi.org/10.1039/c6cc02791a

    Article  CAS  Google Scholar 

  25. Wang Q, Yin QB, Fan Y, Zhang L, Hu O, Guo XM, Shi Q, Fu HY, She YB (2019) Double quantum dots-nanoporphyrin fluorescence-visualized paper-based sensors for detecting organophosphorus pesticides. Talanta 199:46–53. https://doi.org/10.1016/j.talanta.2019.02.023

    Article  CAS  PubMed  Google Scholar 

  26. Fu HY, Hu O, Fan Y, Hu Y, Huang JH, Wang Z, She YB (2019) Rational design of an “on-off-on” fluorescent assay for chiral amino acids based on quantum dots and nanoporphyrin. Sensors Actuators B Chem 287:1–8. https://doi.org/10.1016/j.snb.2019.02.023

    Article  CAS  Google Scholar 

  27. Chen H, Wang S, Fu H, Xie H, Lan W, Xu L, Zhang L, She Y Dual-QDs ratios fluorescent probe for sensitive and selective detection of silver ions contamination in real sample. Spectrochim Acta A 234:118248. https://doi.org/10.1016/j.saa.2020.118248

  28. Chen H, Wei L, Guo X, Hai C, Xu L, Zhang L, Lan W, Zhou C, She Y, Fu H (2020, 2020) Determination of l-theanine in tea water using fluorescence-visualized paper-based sensors based on CdTe quantum dots/corn carbon dots and nano-porphyrin with chemometrics. J Sci Food Agric. https://doi.org/10.1002/jsfa.10882

  29. Chen XP, Tang MQ, Liu Y, Huang JQ, Liu ZY, Tian HY, Zheng YT, de la Chapelle ML, Zhang Y, Fu WL (2019) Surface-enhanced Raman scattering method for the identification of methicillin-resistant Staphylococcus aureus using positively charged silver nanoparticles. Microchim Acta 186(2):102–110. https://doi.org/10.1007/s00604-018-3150-6

    Article  CAS  Google Scholar 

  30. Botelho BG, Reis N, Oliveira LS, Sena MM (2015) Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA. Food Chem 181:31–37. https://doi.org/10.1016/j.foodchem.2015.02.077

    Article  CAS  PubMed  Google Scholar 

  31. Mevik BH, Cederkvist HR Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR). J Chemom 18:422–429. https://doi.org/10.1002/cem.887

  32. Du CX, Ma CQ, Gu J, Li L, Chen GQ (2020) Fluorescence sensing of caffeine in tea beverages with 3,5-diaminobenzoic acid. Sensors 20:819. https://doi.org/10.3390/s20030819

    Article  Google Scholar 

  33. Nemati F, Hosseini M, Zaredorabei R, Salehnia F, Ganjali MR (2018) Fluorescent turn on sensing of caffeine in food sample based on sulfur-doped carbon quantum dots and optimization of process parameters through response surface methodology. Sensors Actuators B Chem 273:25–34. https://doi.org/10.1016/j.snb.2018.05.163

    Article  CAS  Google Scholar 

  34. Zhang Y, Shang J, Jiang B, Zhou XR, Wang JH (2017) Electrochemical determination of caffeine in oolong tea based on polyelectrolyte functionalized multi-walled carbon nanotube. Int J Electrochem Sc 12:2552–2562. https://doi.org/10.20964/2017.03.02

    Article  CAS  Google Scholar 

  35. Deng HY, Wang B, Wu M, Deng B, Xie LW, Guo YP (2019) Rapidly colorimetric detection of caffeine in beverages by silver nanoparticle sensors coupled with magnetic molecularly imprinted polymeric microspheres. Int J Food Sci Technol 54:202–211. https://doi.org/10.1111/ijfs.13924

    Article  CAS  Google Scholar 

  36. Sivrikaya S (2020) A deep eutectic solvent based liquid phase microextraction for the determination of caffeine in Turkish coffee samples by HPLC-UV. Food Addit Contam A 37:488–495. https://doi.org/10.1080/19440049.2020.1711972

    Article  CAS  Google Scholar 

  37. Bahari D, Babamiri B, Salimi A, Salimizand H (2020) Ratiometric fluorescence resonance energy transfer aptasensor for highly sensitive and selective detection of Acinetobacter baumannii bacteria in urine sample using carbon dots as optical nanoprobes. Talanta 221:121619. https://doi.org/10.1016/j.talanta.2020.121619

    Article  CAS  PubMed  Google Scholar 

  38. Liu L, Huang Q, Tanveer ZI, Jiang K, Zhang JH, Pan H, Luan LJ, Liu XS, Han Z, Wu YJ (2020) “Turn off-on” fluorescent sensor based on quantum dots and self-assembled porphyrin for rapid detection of ochratoxin A. Sensor Actuat B-Chem 302:127212.1–127212.8. https://doi.org/10.1016/j.snb.2019.127212

    Article  CAS  Google Scholar 

Download references

Funding

This study received financial support from the National Key R&D Program of China (no. 2020YFC1712700), the National Natural Science Foundation of China (grants nos. 31972164, 21776321, 32001789, 21665022, 21776259), Guizhou Provincial Science and Technology Department (nos. QKHJC [2017]1186, QKHZC [2019]2816, and QKHPTRC [2020]5009), the Talented Researcher Program from Guizhou Provincial Department of Education (QJHKYZ [2018]073), Tongren Science and Technology Bureau (No.TSKY2019-3), and the Talented Youth Cultivation Program from “the Fundamental Research Funds for the Central Universities”, and South-Central University for Nationalities (No. CZP20007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. A paper-based sensor for visual detection of caffeine was constructed.

2. This sensor was built based on nano ZnTPyP and CdTe QDs.

3. This method has an ultra-low detection limit for caffeine (3.153 × 10−10 mol L−1).

4. Nano ZnTPyP bind to caffeine through electrostatic attraction and coordination.

Supplementary information

ESM 1

(DOCX 2020 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Liu, R., Guo, X. et al. Visual paper-based sensor for the highly sensitive detection of caffeine in food and biological matrix based on CdTe-nano ZnTPyP combined with chemometrics. Microchim Acta 188, 27 (2021). https://doi.org/10.1007/s00604-020-04663-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04663-3

Keywords

Navigation