Skip to main content
Log in

In situ deposition of MOF-74(Cu) nanosheet arrays onto carbon cloth to fabricate a sensitive and selective electrocatalytic biosensor and its application for the determination of glucose in human serum

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new electrocatalytic biosensor (MOF-74(Cu) NS-CC) based on the in situ deposition of MOF-74(Cu) nanosheet on carbon cloth via a bottom-up synthetic approach in a glass tube was developed. The electrocatalytic activity of the deposited MOF-74(Cu) NS was demonstrated in the oxidation of glucose to gluconate under alkaline conditions. The results revealed that the proposed method of in situ formation of MOF-74(Cu) NS onto a carbon cloth surface in a multi-layer solution is capable to generate a stable MOF-74(Cu) NS-CC electrode with excellent sensing performance. When the as-synthesized MOF-74(Cu) NS-CC was applied directly as the working electrode for glucose sensing, it showed much higher conductivity and redox activity than MOF-74(Cu) NS-GCE. With the potential applied at 0.55 V (vs. Ag/AgCl), this new electrocatalytic biosensor exhibits an excellent linear relationship between current density and concentration of glucose. Moreover, a wide linear range of detection (1.0 to 1000 μM) was observed. The limit of detection was found to be 0.41 μM (S/N = 3). The response sensitivity is 3.35 mA mM−1 cm−2 when the concentration of glucose is in the range 1–100 μM and 3.81 mA mM−1 cm−2 for the 100–1000 μM concentration range. This study provides a low-cost, easy to prepare, and reproducible methodology for the synthesis of highly redox-active nanomaterials based on the in situ formation of two-dimensional MOF-74(Cu) NS for the development of new electrocatalytic biosensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pang Y, Zang X, Li H, Liu J, Chang Q, Zhang S, Wang C, Wang Z (2020) Solid-phase microextraction of organophosphorous pesticides from food samples with a nitrogen-doped porous carbon derived from g-C3N4 templated MOF as the fiber coating. J Hazard Mater 384:121430

    CAS  PubMed  Google Scholar 

  2. Li JT, Huang WZ, Wang MM, Xi SB, Meng JS, Zhao KN, Jin J, Xu WW, Wang ZY, Liu X, Chen Q, Xu LH, Liao XB, Jiang YL, Owusu KA, Jiang BL, Chen CX, Fan DNA, Zhou L, Mai LQ (2019) Low-crystalline bimetallic metal-organic framework electrocatalysts with rich active sites for oxygen evolution. Acs Energy Letters 4:285–292

    CAS  Google Scholar 

  3. Fan WD, Wang X, Liu XP, Xu B, Zhang XR, Wang WJ, Wang XK, Wang YT, Dai FN, Yuan DQ, Sun DF (2019) Regulating C2H2 and CO2 storage and separation through pore environment modification in a microporous Ni-MOF. ACS Sustain Chem Eng 7:2134–2140

    CAS  Google Scholar 

  4. Cabrera-Garcia A, Checa-Chavarria E, Rivero-Buceta E, Moreno V, Fernandez E, Botella P (2019) Amino modified metal-organic frameworks as pH-responsive nanoplatforms for safe delivery of camptothecin. J Colloid Interface Sci 541:163–174

    CAS  PubMed  Google Scholar 

  5. Lai H, Li G, Xu F, Zhang Z (2020) Metal–organic frameworks: opportunities and challenges for surface-enhanced Raman scattering–a review. J Mater Chem C 8:2952–2963

    CAS  Google Scholar 

  6. Hu S, Ouyang W, Guo L, Lin Z, Jiang X, Qiu B, Chen G (2017) Facile synthesis of Fe3O4/g-C3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A. Biosens Bioelectron 92:718–723

  7. Song JY, He WT, Shen H, Zhou ZX, Li MQ, Su P, Yang Y (2019) Construction of multiple enzyme metal-organic frameworks biocatalyst via DNA scaffold: a promising strategy for enzyme encapsulation. Chem Eng J 363:174–182

    CAS  Google Scholar 

  8. Gkaniatsou E, Sicard C, Ricoux R, Benahmed L, Bourdreux F, Zhang Q, Serre C, Mahy JP, Steunou N (2018) Enzyme encapsulation in mesoporous metal-organic frameworks for selective biodegradation of harmful dye molecules. Angewandte Chemie-International Edition 57:16141–16146

    CAS  PubMed  Google Scholar 

  9. Yi XR, He XB, Yin FX, Chen BH, Li GR, Yin HQ (2019) Co-CoO-Co3O4/N-doped carbon derived from metal-organic framework: the addition of carbon black for boosting oxygen electrocatalysis and Zn-air battery. Electrochim Acta 295:966–977

    CAS  Google Scholar 

  10. Mukherjee S, Cullen DA, Karakalos S, Liu KX, Zhang H, Zhao S, Xu H, More KL, Wang GF, Wu G (2018) Metal-organic framework- derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N-2 and H2O in alkaline electrolytes. Nano Energy 48:217–226

    CAS  Google Scholar 

  11. Hu SS, Yan JJ, Huang XM, Guo LH, Lin ZY, Luo F, Qiu B, Wong KY, Chen GN (2018) A sensing platform for hypoxanthine detection based on amino-functionalized metal organic framework nanosheet with peroxidase mimic and fluorescence properties. Sensors and Actuators B-Chemical 267:312–319

    CAS  Google Scholar 

  12. Salunkhe RR, Kaneti YV, Kim J, Kim JH, Yamauchi Y (2016) Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc Chem Res 49:2796–2806

    CAS  PubMed  Google Scholar 

  13. Zhong H, Ly KH, Wang M, Krupskaya Y, Han X, Zhang J, Zhang J, Kataev V, Büchner B, Weidinger IM (2019) A phthalocyanine-based layered two-dimensional conjugated metal–organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew Chem 131:10787–10792

    Google Scholar 

  14. Xiao Q-Q, Liu D, Wei Y-L, Cui G-H (2019) A new multifunctional two-dimensional cobalt (II) metal–organic framework for electrochemical detection of hydrogen peroxide, luminescent sensing of metal ions, and photocatalysis. Polyhedron 158:342–351

    CAS  Google Scholar 

  15. Zhao M, Wang Y, Ma Q, Huang Y, Zhang X, Ping J, Zhang Z, Lu Q, Yu Y, Xu H (2015) Ultrathin 2D metal–organic framework nanosheets. Adv Mater 27:7372–7378

    CAS  PubMed  Google Scholar 

  16. Wang Q, Yang Y, Gao F, Ni J, Zhang Y, Lin Z (2016) Graphene oxide directed one-step synthesis of flowerlike graphene@ HKUST-1 for enzyme-free detection of hydrogen peroxide in biological samples. ACS Appl Mater Interfaces 8:32477–32487

    CAS  PubMed  Google Scholar 

  17. Yin D, Liu J, Bo X, Li M, Guo L (2017) Porphyrinic metal-organic framework/macroporous carbon composites for electrocatalytic applications. Electrochim Acta 247:41–49

    CAS  Google Scholar 

  18. Chaudhari NK, Jin H, Kim B, Lee K (2017) Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale 9:12231–12247

    CAS  PubMed  Google Scholar 

  19. Zha Q, Li M, Liu Z, Ni Y (2020) Hierarchical Co, Fe-MOF-74/Co/carbon cloth hybrid electrode: simple construction and enhanced catalytic performance in full water splitting. ACS Sustain Chem Eng 8:12025–12035

    CAS  Google Scholar 

  20. Zhang L, Zhang Y, Huang S, Yuan Y, Li H, Jin Z, Wu J, Liao Q, Hu L, Lu J (2018) Co3O4/Ni-based MOFs on carbon cloth for flexible alkaline battery-supercapacitor hybrid devices and near-infrared photocatalytic hydrogen evolution. Electrochim Acta 281:189–197

    CAS  Google Scholar 

  21. Hu S, Zhu L, Lam CW, Guo L, Lin Z, Qiu B, Wong KY, Chen G, Liu Z (2019) Fluorometric determination of the activity of inorganic pyrophosphatase and its inhibitors by exploiting the peroxidase mimicking properties of a two-dimensional metal organic framework. Microchim Acta 186:190

    Google Scholar 

  22. Chang J, Li H, Hou T, Duan W, Li F (2018) Paper-based fluorescent sensor via aggregation induced emission fluorogen for facile and sensitive visual detection of hydrogen peroxide and glucose. Biosens Bioelectron 104:152–157

    CAS  PubMed  Google Scholar 

  23. Gu C, Gai P, Hou T, Li H, Xue C, Li F (2017) Enzymatic fuel cell-based self-powered homogeneous immunosensing platform via target-induced glucose release: an appealing alternative strategy for turn-on melamine assay. ACS Appl Mater Interfaces 9:35721–35728

    CAS  PubMed  Google Scholar 

  24. Neto SA, Almeida TS, Palma LM, Minteer SD, Andrade ARD (2014) Hybrid nanocatalysts containing enzymes and metallic nanoparticles for ethanol/O 2 biofuel cell. J Power Sources 259:25–32

    Google Scholar 

  25. Mahmoud MA, O’Neil D, El-Sayed MA Hollowand solid metallic nanoparticles in sensingand in nanocatalysis. Chemistry of Materials 26:44–58

  26. Zhao L, Thomas JP, Heinig NF, Abd-Ellah M, Wang X, Leung KT (2014) Au–Pt alloy nanocatalysts for electro-oxidation of methanol and their application for fast-response non-enzymatic alcohol sensing. J Mater Chem C 2:2707–2714

    CAS  Google Scholar 

  27. Wu XF, Bao CC, Niu QQ, Lu WB (2019) A novel method to construct a 3D FeWO4 microsphere-array electrode as a non-enzymatic glucose sensor. Nanotechnology 30:165501

    CAS  PubMed  Google Scholar 

  28. Lu WB, Wu XF (2018) Ni-MOF nanosheet arrays: efficient non-noble-metal electrocatalysts for non-enzymatic monosaccharide sensing. New J Chem 42:3180–3183

    CAS  Google Scholar 

  29. Shahhoseini L, Mohammadi R, Ghanbari B, Shahrokhian S (2019) Ni(II) 1D-coordination polymer/C-60-modified glassy carbon electrode as a highly sensitive non-enzymatic glucose electrochemical sensor. Appl Surf Sci 478:361–372

    CAS  Google Scholar 

  30. Darabdhara G, Bordoloi J, Manna P, Das MR (2019) Biocompatible bimetallic Au-Ni doped graphitic carbon nitride sheets: a novel peroxidase-mimicking artificial enzyme for rapid and highly sensitive colorimetric detection of glucose. Sensors and Actuators B-Chemical 285:277–290

    CAS  Google Scholar 

  31. Dong SY, Zhang DD, Cui H, Huang TL (2019) ZnO/porous carbon composite from a mixed-ligand MOF for ultrasensitive electrochemical immunosensing of C-reactive protein. Sensors and Actuators B-Chemical 284:354–361

    CAS  Google Scholar 

  32. Li Y, Dai H, Zhang Q, Zhang S, Chen S, Hong Z, Lin Y (2016) In situ generation of electron acceptor to amplify the photoelectrochemical signal from poly (dopamine)-sensitized TiO 2 signal crystal for immunoassay. J Mater Chem B 4:2591–2597

    CAS  PubMed  Google Scholar 

  33. Zhang Y, Su L, Manuzzi D, de los Monteros HVE, Jia W, Huo D, Hou C, Lei Y (2012) Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens Bioelectron 31:426–432

    CAS  PubMed  Google Scholar 

  34. Kang X, Mai Z, Zou X, Cai P, Mo J (2007) A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal Biochem 363:143–150

    CAS  PubMed  Google Scholar 

  35. Nenkova R, Wu J, Zhang Y, Godjevargova T (2013) Influence of different nanozeolite particles on the sensitivity of a glucose biosensor. Anal Biochem 439:65–72

    CAS  PubMed  Google Scholar 

  36. Chen T, Liu D, Lu W, Wang K, Du G, Asiri AM, Sun X (2016) Three-dimensional Ni2P nanoarray: an efficient catalyst electrode for sensitive and selective nonenzymatic glucose sensing with high specificity. Anal Chem 88:7885–7889

    CAS  PubMed  Google Scholar 

  37. Hosseini H, Rezaei SJT, Rahmani P, Sharifi R, Nabid MR, Bagheri A (2014) Nonenzymatic glucose and hydrogen peroxide sensors based on catalytic properties of palladium nanoparticles/poly(3,4-ethylenedioxythiophene) nanofibers. Sensors & Actuators B Chemical 195:85–91

    CAS  Google Scholar 

  38. Wang J, Wang Z, Zhao D, Xu C (2014) Facile fabrication of nanoporous PdFe alloy for nonenzymatic electrochemical sensing of hydrogen peroxide and glucose. Anal Chim Acta 832:34–43

    CAS  PubMed  Google Scholar 

  39. Liu M, Ru L, Wei C (2013) Graphene wrapped Cu 2 O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212

    CAS  PubMed  Google Scholar 

  40. Zhao D, Xu C (2015) A nanoporous palladium-nickel alloy with high sensing performance towards hydrogen peroxide and glucose. Journal of Colloid & Interface Science 447:50–57

    CAS  Google Scholar 

  41. Li Y, Zhong Y, Zhang Y, Weng W, Li S (2015) Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor. Sensors Actuators B Chem 206:735–743

    CAS  Google Scholar 

  42. Gao W, Tjiu WW, Wei J, Liu T (2014) Highly sensitive nonenzymatic glucose and H2O2 sensor based on Ni (OH) 2/electroreduced graphene oxide− multiwalled carbon nanotube film modified glass carbon electrode. Talanta 120:484–490

    CAS  PubMed  Google Scholar 

  43. Luo Y, Wang Q, Li J, Xu F, Sun L, Bu Y, Zou Y, Kraatz H-B, Rosei F (2020) Tunable hierarchical surfaces of CuO derived from metal–organic frameworks for non-enzymatic glucose sensing. Inorganic Chemistry Frontiers 7:1512–1525

    CAS  Google Scholar 

  44. Gu C, Wang Q, Zhang L, Yang P, Xie Y, Fei J (2020) Ultrasensitive non-enzymatic pesticide electrochemical sensor based on HKUST-1-derived copper oxide@ mesoporous carbon composite. Sensors Actuators B Chem 305:127478

    CAS  Google Scholar 

  45. Alshahrani LA, Miao L, Zhang Y, Cheng S, Sathishkumar P, Saravanakumar B, Nan J, Gu FL (2019) 3D-flower-like copper sulfide nanoflake-decorated carbon nanofragments-modified glassy carbon electrodes for simultaneous electrocatalytic sensing of co-existing hydroquinone and catechol. Sensors 19:2289

    CAS  Google Scholar 

  46. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    CAS  PubMed  Google Scholar 

Download references

Funding

This study is funded by the STS Key Project of Fujian Province (2017T3007), Nature Sciences Funding of Fujian Province (2018J01682) and the Project of Quangang District Science and Technology Bureau (2019G01), and Natural Science Foundation of Guangdong Province (2019A1515011799).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Teng, Wing-Leung Wong or Bin Qiu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 11929 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Lin, Y., Teng, J. et al. In situ deposition of MOF-74(Cu) nanosheet arrays onto carbon cloth to fabricate a sensitive and selective electrocatalytic biosensor and its application for the determination of glucose in human serum. Microchim Acta 187, 670 (2020). https://doi.org/10.1007/s00604-020-04634-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04634-8

Keywords

Navigation