Skip to main content
Log in

Metal organic framework ZIF-90 modified with lactobionic acid for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An in situ zeolite imidazole metal organic framework-90 (ZIF-90) modified capillary was prepared via the method of solvothermal synthesis. The coating of ZIF-90 was characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and EOF. Capillary electrochromatography–based enantioseparation of the basic drugs propranolol (PRO), metoprolol (MET), atenolol (ATE), bisoprolol (BIS), and sotalol (SOT) was performed using lactobionic acid (LA) as the chiral selector. Compared with an uncoated silica capillary, the resolutions are greatly improved (PRO 1.40 → 3.23; MET 1.07 → 3.19; ATE 1.07 → 3.15; BIS 1.16 → 3.41; SOT 1.00 → 2.79). Effects of buffer pH values, proportion of organic additives, concentration of lactobionic acid, and applied voltage were investigated.

Schematic presentation of the preparation of zeolitic imidazolate framework-90 (ZIF-90) modified capillary (ZIF-90@capillary) for enantioseparation of drug enantiomers. The capillary was applied to construct capillary electrochromatography system with lactobionic acid for enantioseparation of basic chiral drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gusev I, Huang X, Horváth C (1999) Capillary columns with in situ formed porous monolithic packing for micro HPLC and capillary electrochromatography. J Chromatogr A 1855(1):273–290. https://doi.org/10.1016/S0021-9673(99)00697-4

    Article  Google Scholar 

  2. D'Orazio G, Asensio-Ramos M, Fanali C, Hernández-Borgesb J, Fanalia S (2016) Capillary electrochromatography in food analysis. Trends Anal Chem 82:250–267. https://doi.org/10.1016/j.trac.2016.06.012

    Article  CAS  Google Scholar 

  3. Xu L, Pi C, Wang D, Tang C, Dong L, Zhang C (2014) Preparation and characterization of lysine-immobilized poly (glycidyl methacrylate) nanoparticle-coated capillary for the separation of amino acids by open tubular capillary electrochromatography. J Chromatogr A 1323:179–183. https://doi.org/10.1016/j.chroma.2013.10.093

    Article  CAS  PubMed  Google Scholar 

  4. Bao T, Tang P, Kong D, Mao Z, Chen Z (2016) Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation. J Chromatogr A:S0021967316304010. https://doi.org/10.1016/j.chroma.2016.03.085

  5. Zhao H, Wang Y, Zhang D, Cheng H, Wang Y (2017) Electrochromatographic performance of graphene and graphene oxide modified silica particles packed capillary columns. Electrophoresis 39(7):933–940. https://doi.org/10.1002/elps.201700435

    Article  CAS  Google Scholar 

  6. Sun J, Yang S, Cheng H, Wang Y, Liu J (2019) Multi-particle frits for packed capillary columns in electrochromatographic use. J Chromatogr A 1595:221–229. https://doi.org/10.1016/j.chroma.2019.02.046

    Article  CAS  PubMed  Google Scholar 

  7. Tran L, Shuchi D, Jung H (2015) Enantioseparation of basic chiral drugs on a carbamoylated erythromycin-zirconia hybrid monolith using capillary electrochromatography. J Chromatogr A 1356:289–293. https://doi.org/10.1016/j.chroma.2014.06.089

    Article  CAS  Google Scholar 

  8. Park JM, Park JM (2014) Enantiomer separations of basic chiral compounds by capillary electrochromatography on a phosphated β-cyclodextrin-modified zirconia monolith. J Chromatogr A 1339:229–233. https://doi.org/10.1016/j.chroma.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  9. Fei Z, Zhang M, Zhang J, Yuan L (2014) Chiral metal–organic framework used as stationary phases for capillary electrochromatography. Anal Chim Acta 830:49–55. https://doi.org/10.1016/j.aca.2014.04.054

    Article  CAS  PubMed  Google Scholar 

  10. Guihen E, Glennon JD (2004) Recent highlights in stationary phase design for open-tubular capillary electrochromatography. J Chromatogr A 1044:67–81. https://doi.org/10.1016/j.chroma.2004.05.107

    Article  CAS  PubMed  Google Scholar 

  11. Liu Z, Otsuka K, Terabe S (2002) Evaluation of extended light path capillary and etched capillary for use in open tubular capillary electrochromatography. J Chromatogr A 961:285–291. https://doi.org/10.1016/S0021-9673(02)00662-3

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Q, Du Y, Du S (2014) Evaluation of ionic liquids-coated carbon nanotubes modified chiral separation system with chondroitin sulfate E as chiral selector in capillary electrophoresis. J Chromatogr A 1339:185–191. https://doi.org/10.1016/j.chroma.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  13. Sun X, Chen C, Li X, Du Y, Zhao S, Feng Z (2020) Gold nanoparticles coated with a tetramethylammonium lactobionate ionic liquid for enhanced chiral differentiation in open tubular capillary electrochromatography: application to enantioseparation of β-blockers. Microchim Acta 187(3):170. https://doi.org/10.1007/s00604-020-4121-2

    Article  CAS  Google Scholar 

  14. Okamoto Y, Ikawa Y, Kitagawa F, Otsuka K (2007) Preparation of fritless capillary using avidin immobilized magnetic particles for electrochromatographic chiral separation. J Chromatogr A 1143(1–2):264–269. https://doi.org/10.1016/j.chroma.2007.01.006

    Article  CAS  PubMed  Google Scholar 

  15. Gong Z, Duan L, Tang A (2015) Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector. Microchim Acta 182:1297–1304. https://doi.org/10.1007/s00604-015-1449-0

    Article  CAS  Google Scholar 

  16. Sun X, Du Y, Zhao S, Huang Z, Feng Z (2019) Enantioseparation of propranolol, amlodipine and metoprolol by electrochromatography using an open tubular capillary modified with β-cyclodextrin and poly (glycidyl methacrylate) nanoparticles. Microchim Acta 186(2):128. https://doi.org/10.1007/s00604-018-3163-1

    Article  CAS  Google Scholar 

  17. Li L, Yang F, Wang H, Yan X (2013) Metal-organic framework poly methylmethacrylate composites for open-tubular capillary electrochromatography. J Chromatogr A 1316:97–103. https://doi.org/10.1016/j.chroma.2013.09.081

    Article  CAS  PubMed  Google Scholar 

  18. Hayashi H, Cote A, Furukawa H, O'Keeffe M, Yaghi O (2007) Zeolite A imidazolate frameworks. Nat Mater 6(7):501–506. https://doi.org/10.1038/nmat1927

    Article  CAS  PubMed  Google Scholar 

  19. Cheong L, Wei Y, Wang H, Wang Z, Su X, Shen C (2017) Facile fabrication of a stable and recyclable lipase@amine-functionalized ZIF-8 nanoparticles for esters hydrolysis and transesterification. J Nanopart Res 19(8):280. https://doi.org/10.1007/s11051-017-3979-3

    Article  CAS  Google Scholar 

  20. Huang A, Liu Q, Wang N, Zhu Y, Caro J (2014) Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. J Am Chem Soc 136(42):14686–14689. https://doi.org/10.1021/ja5083602

    Article  CAS  PubMed  Google Scholar 

  21. Chen B, Yang Z, Zhu Y, Xia Y (2014) Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J Mater Chem A 2(40):16811–16831. https://doi.org/10.1039/C4TA02984D

    Article  CAS  Google Scholar 

  22. Ding W, Yu T, Du Y, Sun X, Feng Z, Zhao S, Ma X, Ma M, Chen C (2019) A metal organic framework-functionalized monolithic column for enantioseparation of six basic chiral drugs by capillary electrochromatography. Microchim Acta 187(1). https://doi.org/10.1007/s00604-019-3998-0

  23. Carrasco-Correa E, Martínez-Vilata A, Herrero-Martínez J, Parra J, Maya F, Cerdà V, Cabello C, Palomino G, Svec F (2017) Incorporation of zeolitic imidazolate framework (ZIF-8)-derived nanoporous carbons in methacrylate polymeric monoliths for capillary electrochromatography. Talanta 164:348–354. https://doi.org/10.1016/j.talanta.2016.11.027

    Article  CAS  PubMed  Google Scholar 

  24. Li Y, Bao T, Chen Z (2016) Polydopamine-assisted immobilization of zeolitic imidazolate framework-8 for open-tubular capillary electrochromatography. J Sep Sci 40(4):954–961. https://doi.org/10.1002/jssc.201601152

    Article  CAS  Google Scholar 

  25. Huang A, Dou W, Caro J (2010) Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. J Am Chem Soc 132(44):15562–15564. https://doi.org/10.1021/ja108774v

    Article  CAS  PubMed  Google Scholar 

  26. Yu L, Yan X (2013) Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction. Chem Commun 49(21):2142–2144. https://doi.org/10.1039/C3CC00123G

    Article  CAS  Google Scholar 

  27. Yu L, Yang C, Yan X (2014) Room temperature fabrication of post-modified zeolitic imidazolate framework-90 as stationary phase for open-tubular capillary electrochromatography. J Chromatogr A 1343:188–194. https://doi.org/10.1016/j.chroma.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  28. Zhu M, Zhang L, Chu Z, Wang S, Chen K, Zhang W, Liu F (2018) Preparation and evaluation of open-tubular capillary columns modified with metal-organic framework incorporated polymeric porous layer for liquid chromatography. Talanta 184:29–34. https://doi.org/10.1016/j.talanta.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Hu X, Shao Y, Peng L, Zhang Q, Zhou T, Xiang Y, Ye N (2019) Ambient temperature fabrication of a covalent organic framework from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamine as a coating for use in open-tubular capillary electrochromatography of drugs and amino acids. Microchim Acta 186:650. https://doi.org/10.1007/s00604-019-3741-x

    Article  CAS  Google Scholar 

  30. Pan C, Wang W, Zhang H, Xu L, Chen X (2015) In situ synthesis of homochiral metal–organic framework in capillary column for capillary electrochromatography enantioseparation. J Chromatogr A 1388:207–216. https://doi.org/10.1016/j.chroma.2015.02.034

    Article  CAS  PubMed  Google Scholar 

  31. Ye N, Wang X, Liu Q, Hu X (2018) Covalent bonding of Schiff base network-1 as a stationary phase for capillary electrochromatography. Anal Chim Acta 1028:113–120. https://doi.org/10.1016/j.aca.2018.04.037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of National Natural Science Foundation of China (No.: 82073809).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxiang Du.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1.06 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Ma, M., Du, Y. et al. Metal organic framework ZIF-90 modified with lactobionic acid for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs. Microchim Acta 187, 651 (2020). https://doi.org/10.1007/s00604-020-04611-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04611-1

Keywords

Navigation